Browse

You are looking at 11 - 20 of 1,871 items for :

  • Journal of Applied Biomechanics x
  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Full access

Directional-Specific Modulation of Postural Control and Stepping Kinematics in Multidirectional Gait Initiation

Kuanting Chen and Adam C. King

Daily living activities present a diverse array of task and environmental constraints, highlighting the critical role of adapting gait initiation (GI) for an individual’s quality of life. This study investigated the effects of GI directions, obstacle negotiation, and leg dominance on anticipatory postural adjustments and stepping kinematics. Fourteen active, young, healthy individuals participated in GI across 4 directions—forward, medial 45°, lateral 45°, and lateral 90°—with variations in obstacle presence and leg dominance. Results revealed a consistent decreasing trend in maximum center of pressure displacement, anticipatory postural adjustment duration, step distance, and swing leg velocity with lateral shifts in GI directions, yet the step duration and swing leg heel trajectory were not affected by GI directions except in lateral 90° GI. Center of pressure displacements were intricately scaled to directional propulsive forces generation, and the stepping kinematics were influenced by the directional modifications in movements. With obstacles, modifications in anticipatory postural adjustment metrics and stepping kinematics reflected the obstacle clearance movements. The dominant leg GI exhibited longer step durations and greater movement variability in medial 45° GI. The current investigation of GI factors expands our existing understanding of GI dynamics and offers valuable insights applicable to fall prevention and gait rehabilitation strategies.

Restricted access

A Single Bout of On-Ice Training Leads to Increased Interlimb Asymmetry in Competitive Youth Hockey Athletes

Bryce D. Twible, Luca Ruggiero, Chris J. McNeil, and Brian H. Dalton

Interlimb asymmetry (ILA) refers to an anatomical or physiological imbalance between contralateral limbs, which can influence neuromuscular function. Investigating the influence of neuromuscular fatigue on ILA may be critical for optimizing training programs, injury rehabilitation, and sport-specific performance. The purpose of this study was to determine if a single bout of ice hockey-specific exercise creates or exacerbates lower-limb ILA. Before and after an on-ice training session, 33 youth ice-hockey athletes (14.9 [1.7] y; 11 females) performed 3 repetitions of a maximal vertical countermovement jump (CMJ), an eccentric hamstring contraction, and maximal isometric hip adduction and abduction contractions. Force- and power-related variables were analyzed to determine limb-specific neuromuscular function. The on-ice session reduced maximal isometric hip adduction (left: 7.3% [10.3%]; right: 9.5% [9.6%]) and abduction (left: 4.9% [6.9%]; right: 5.0% [8.1%]) force, but did not impair (P ≥ .10) CMJ performance (jump height, relative peak power, braking duration, and total duration). After the on-ice session, ILA was greater for CMJ propulsive impulse (6.3% [2.9%] vs 5.1% [2.6%]), CMJ braking rate of force development (19.3% [7.6%] vs 15.2% [6.4%]), and peak isometric hip adduction force (6.7% [5.5%] vs 6.1% [4.1%]). In conclusion, hockey-specific exercise leads to increased ILA for multiple force-related metrics, which may be a compensatory mechanism to maintain bilateral task performance when fatigued.

Full access

Effect of External Work Magnitude on Mechanical Efficiency of Sledge Jumping

Keitaro Seki and Heikki Kyröläinen

The mechanical efficiency of human locomotion has been studied extensively. The mechanical efficiency of the whole body occasionally exceeds muscle efficiency during bouncing type gaits. It is thought to occur due to elasticity and stiffness of the tendinomuscular system and neuromuscular functions, especially stretch reflexes. In addition, the lower limb joint kinetics affect mechanical efficiency. We investigated the impact of varying external work on mechanical efficiency and lower limb kinetics during repeated sledge jumping. Fifteen male runners performed sledge jumping for 4 minutes at 3 different sledge inclinations. Lower limb kinematics, ground reaction forces, and expired gases were analyzed. Mechanical efficiency did not differ according to sledge inclination. Mechanical efficiency correlated positively with the positive mechanical work of the knee and hip joints and the negative contribution of the hip joints. Conversely, it correlated negatively with both the positive and negative contributions of the ankle joint. This may be attributable to the greater workload in this study versus previous studies. To achieve greater external work, producing more mechanical energy at the proximal joint and transferring it to the distal joint could be an effective strategy for improving mechanical efficiency because of the greater force-generating capability of distal joint muscles.

Full access

Interlaboratory Study Toward Combining Gait Kinematics Data Sets of Long-Distance Runners

Reginaldo Kisho Fukuchi, Marcos Duarte, and Reed Ferber

The limited sample size in gait studies has hampered progress in the field. This challenge could be addressed through multicenter studies, thereby leveraging data sets from different laboratories. This study compared 3-dimensional lower-extremity running kinematics between the Biomechanics and Motor Control Laboratory, Federal University of ABC (Brazil), and the Running Injury Clinic, University of Calgary (Canada). Three-dimensional lower-extremity kinematics from 23 male runners were collected from each laboratory using comparable instrumentation and experimental procedures. The 3-dimensional hip, knee, and ankle angles were compared within and between centers using root-mean-square deviation. Two-sample t tests Statistical Parametric Mapping tested the hypothesis that the data from both laboratories were not different. The sagittal plane hip, knee, and ankle angles were similar between laboratories, while notable differences were observed for frontal (hip and ankle) and transverse (hip and knee) plane angles. The average interlaboratory root-mean-square deviation (2.6°) was lower than the intralaboratory root-mean-square deviation (Biomechanics and Motor Control = 4.8°, Running Injury Clinic = 5.6°), with the ankle transverse angle displaying the smallest, and the knee transverse angle displaying the largest variability. This study demonstrates the potential of combining gait kinematics data from different laboratories to increase sample size, but frontal and transverse plane data should be considered with caution.

Restricted access

Volume 40 (2024): Issue 4 (Aug 2024)

Restricted access

Comparing Sagittal-Plane Biomechanics of Drop Jump Landing in Athletes With and Without Knee Osteoarthritis 2-Year Post-Anterior Cruciate Ligament Reconstruction

Zakariya H. Nawasreh, Mohammad A. Yabroudi, Sharf M. Daradkeh, Sumayeh B. Abujaber, Adel S. Alsharei, and Khaldoon M. Bashaireh

The study aimed to determine differences in sagittal-plane joint biomechanics between athletes with and without knee osteoarthritis (OA) during drop vertical jump 2 years after anterior cruciate ligament reconstruction (ACLR). Forty-one athletes with ACLR completed motion analysis testing during drop vertical jump from 30 cm. Sagittal-plane peak joint angles and moments and joint contributions to total support moment (TSM) were calculated during first landing. Medial compartment knee OA of the reconstructed knee was evaluated using Kellgren–Lawrence scores (ACLR group: Kellgren–Lawrence <2; ACLR-OA group: Kellgren–Lawrence ≥2). The ACLR-OA group (n = 13) had higher hip and lower knee contributions in the surgical limb than the ACLR group and their nonsurgical limb. Further, the ACLR-OA group had higher peak hip extension moment than the ACLR group (P = .024). The ACLR-OA group had significantly lower peak knee extension and ankle plantar flexion moments and TSM (P ≤ .032) than ACLR group. The ACLR-OA group landed with increased hip extension moment, decreased knee extension and ankle plantar flexion moments and TSM, and decreased knee and increased hip contributions to TSM compared with ACLR group. The ACLR-OA group may have adopted movement patterns to decrease knee load and compensated by shifting the load to the hip. Clinicians may incorporate tailored rehabilitation programs that mitigate the decreased knee load to minimize the risk of knee OA after ACLR.

Restricted access

Chronic Adaptions in Quadriceps Fascicle Mechanics Are Related to Altered Knee Biomechanics After Anterior Cruciate Ligament Reconstruction

McKenzie S. White, Lucia M. Mancini, Luke Stoneback, Riann M. Palmieri-Smith, and Lindsey K. Lepley

Following anterior cruciate ligament reconstruction (ACLR), patients exhibit abnormal walking mechanics and quadriceps dysfunction. Quadriceps dysfunction has been largely attributed to muscle atrophy and weakness. While important, these factors do not capture intrinsic properties of muscle that govern its ability to generate force and withstand load. While fascicle abnormalities after ACLR have been documented in early stages of recovery (<12 mo), long-term effects of ACLR on fascicle mechanics remain unexplored. We evaluated quadriceps fascicle mechanics during walking 3 years post-ACLR and examined the relationship with knee mechanics. Participants included 24 individuals with ACLR and 24 Controls. Linear mixed models compared the ACLR, Contralateral, and Controls limbs for (1) quadriceps strength, (2) fascicle architecture and mechanics, and (3) knee mechanics. No difference in strength or overall fascicle length excursions was found between limbs. The ACLR limb exhibited longer fascicles at heel strike and peak knee extension moment (P < .001–.004), and smaller fascicle angles at heel strike, peak knee extension moment, and overall suppressed fascicle angle excursions (P < .001–.049) relative to the Contralateral and/or Control limb. This indicates an abnormality in fascicle architecture and mechanics following ACLR and suggests abnormalities in contractile function that cannot be explained by muscle weakness and may contribute to long-term gait irregularities.

Restricted access

Measurement Position Influences Sex Comparisons of Distal Femoral Cartilage Thickness With Ultrasound Imaging

Harry S. Battersby, Ryan J. Evans, Iwi J. Eghobamien, and Derek N. Pamukoff

The purpose was to examine (1) the effect of measurement position and sex on femoral cartilage outcomes, and (2) the association between gait biomechanics and cartilage outcomes. Fifty individuals participated (25 males and 25 females; age = 20.62 [1.80] y). Ultrasound measured femoral cartilage thickness and echo-intensity at 90°, 115°, and 140° of knee flexion. Gait outcomes included the external knee adduction and knee flexion moments. Cartilage outcomes were compared using 2 (sex) × 3 (position) repeated-measures analysis of variance. Gait and cartilage associations were assessed using stepwise regression. Medial cartilage was thicker when measured at 90° compared with 115° (P = .02) and 140° (P < .01), and 115° compared with 140°, (P < .01) in males but not in females. Cartilage was thicker at 90° compared with 140° across both sexes within all regions (P < .01). Males had thicker cartilage than females in all positions (P < .01). Echo-intensity was lower at 90° than 115° (P < .01) and 140° (P = .01) in the central and lower at 90° than at 115° (P < .01) and 140° (P = .03) in lateral regions. No association was found between gait and cartilage outcomes. Ultrasound imaging position effects cartilage features more in males compared with females. Imaging position and sex influence cartilage outcomes and should be considered in study designs and clinical evaluation.

Restricted access

Hierarchical Organization and Adjustment of Force Coordination in Response to Self-Triggered and External-Triggered Cues in Simulated Archery Performance

Kitae Kim, Junkyung Song, Dawon Park, and Jaebum Park

The purpose of this study was to investigate the hierarchical organization of digit force production and its effect on stability and performance during the simulated archery task. The simulated archery shooting task required the production of a prescribed level of force in virtual space with the left hand and an equivalent force with all 4 fingers of right hand. A single trial had 2 phases, including static force production as aiming in archery and quick force release to shoot the virtual arrow. The timing of the force release was determined by the participant’s choice or response to the external cue. The coordination indices, that is, the synergy index, of force stabilization were quantified in 2 hierarchies by decomposing the variance components. The accuracy and precision of the hit position of the virtual arrow were calculated as performance-related indices. The results confirmed that the precision, that is, reproducibility, of the performance was greater when the force release time was determined by the self-selected time, suggesting the beneficial effect of the anticipatory mechanism. There was a distinct synergistic organization of digit forces for the stabilization of net forces in both bimanual and multifinger levels, which was especially correlated with the precision of performance.

Restricted access

Forearm Posture Affects the Corticospinal Excitability of Intrinsic and Extrinsic Hand Muscles in Dominant and Nondominant Sides

Marco Antonio Cavalcanti Garcia, Thiago Santos de Carvalho, Renan Hiroshi Matsuda, Oswaldo Baffa, Luis Aureliano Imbiriba, and Victor Hugo Souza

Different forearm postures can modulate corticospinal excitability. However, there is no consensus on whether handedness plays a role in such a mechanism. This study investigated the effects of 3 forearm postures (pronation, neutral, and supination) on the corticospinal excitability of muscles from the dominant and nondominant upper limbs. Surface electromyography was recorded from the abductor digiti minimi, flexor pollicis brevis, and flexor carpi radialis from both sides of 12 right-handed volunteers. Transcranial magnetic stimulation pulses were applied to each muscle’s hotspot in both cerebral hemispheres. Motor-evoked potential peak-to-peak amplitude and latency and resting motor threshold were measured. The data were evaluated by analysis of variance. The level of significance was set at 5%. The resting motor threshold was similar for the 3 muscles and both sides. Motor-evoked potential peak-to-peak amplitude from flexor pollicis brevis was lower during supination, and the dominant upper limb latency was longer. The flexor carpi radialis presented lower motor-evoked potential peak-to-peak amplitudes for neutral and shorter latencies during supination. Abductor digiti minimi seemed not to be affected by posture or side. Different muscles from dominant and nondominant sides may undergo corticospinal modulation, even distally localized from a particular joint and under rest.