Purpose: One hundred years ago, Hill and Lupton introduced the concept of maximal oxygen uptake (
Browse
The V ˙ O 2 max Legacy of Hill and Lupton (1923)—100 Years On
Grégoire P. Millet, Johannes Burtscher, Nicolas Bourdillon, Giorgio Manferdelli, Martin Burtscher, and Øyvind Sandbakk
Highly Trained Biathletes With a Fast-Start Pacing Pattern Improve Time-Trial Skiing Performance by Pacing More Evenly
Thomas Losnegard, Magne Lund-Hansen, Erland Vedeler Stubbe, Even Dahlen Granrud, Harri Luchsinger, Øyvind Sandbakk, and Jan Kocbach
Purpose: In sprint biathlon, a J-shaped pacing pattern is commonly used. We investigated whether biathletes with a fast-start pacing pattern increase time-trial skiing and shooting performance by pacing more evenly. Methods: Thirty-eight highly trained biathletes (∼21 y, 27 men) performed an individual 7.5 (3 × 2.5 km for women) or 10-km (3 × 3.3 km for men) time trial on roller skis with a self-selected pacing strategy (day 1). Prone (after lap 1) and standing shooting (after lap 2) stages were performed using paper targets. Based on their pacing strategy in the first time trial (ratio between the initial ∼800-m segment pace on lap 1 and average ∼800-m segment pace on laps 1–3), participants were divided into an intervention group with the fastest starting pace (INT, n = 20) or a control group with a more conservative starting pace (CON, n = 18). On day 2, INT was instructed to reduce their starting pace, while CON was instructed to maintain their day 1 strategy. Results: INT increased their overall time-trial performance more than CON from day 1 to day 2 (mean ± 95% CI; 1.5% ± 0.7% vs 0.0% ± 0.9%, P = .02). From day 1 to day 2, INT reduced their starting pace (5.0% ± 1.5%, P < .01), with reduced ratings of perceived exertion during lap 1 (P < .05). For CON, no change was found for starting pace (−0.8% ± 1.2%) or ratings of perceived exertion between days. No differences were found for shooting performance for either group. Conclusion: Highly trained biathletes with a pronounced fast-start pattern improve skiing performance without any change in shooting performance by pacing more evenly.
Minimal Number of Events Required for Acceleration–Speed Profiling in Elite Women’s Soccer
Patrick Cormier, Ming-Chang Tsai, Cesar Meylan, Victor H.T. Soares, David C. Clarke, and Marc Klimstra
Purpose: To determine the minimum number of events (training or matches) for producing valid acceleration–speed (AS) profiles from global navigation satellite system (GNSS) data. Methods: Nine elite female soccer players participated in a 4-week training camp consisting of 19 events. AS profile metrics calculated from different combinations of athlete events were compared to force–velocity (FV) profile metrics from 2 × 40-m stand-alone sprint effort trials, using the same GNSS 10-Hz technology. Force–velocity profiles were calculated, from which AS profiles were obtained. AS profiles from training and matches were generated by plotting acceleration and speed points and performing a regression through the maximal points to obtain the AS metrics (theoretical maximal speed, x-intercept [in meters per second], theoretical maximal acceleration, y-intercept [in meters per second squared], and the slope per second). A linear mixed model was performed with the AS metrics as the outcome variables, the number of events as a fixed effect, and the participant identifier as a mixed effect. Dunnett post hoc multiple comparisons were used to compare the means of each number of event grouping (1–19 events) to those estimated from the dedicated sprint test. Results: Theoretical maximal speed and theoretical maximal acceleration means were no longer significantly different from the isolated sprint reference with 9 to 19 (small to trivial differences = −0.31 to −0.04 m·s−1, P = .12–.99) and 6 to 19 (small differences = −0.4 to −0.28 m·s−2, P = .06–.79) events, and the slopes were no longer different with 1 to 19 events (trivial differences = 0.06–0.03 s−1, P = .35–.99). Conclusions: AS profiles can be estimated from a minimum of 9 days of tracking data. Future research should investigate methodology resulting in AS profiles estimated from fewer events.
The Relationship Between Isometric and Dynamic Strength Following Resistance Training: A Systematic Review, Meta-Analysis, and Level of Agreement
Lachlan P. James, Jonathon Weakley, Paul Comfort, and Minh Huynh
Background: Maximal lower-body strength can be assessed both dynamically and isometrically; however, the relationship between the changes in these 2 forms of strength following resistance training is not well understood. Purpose: To systematically review and analyze the effects of resistance training on changes in maximal dynamic (1-repetition-maximum back squat, deadlift, and power clean) and position-matched isometric strength (isometric midthigh pull and the isometric squat). In addition, individual-level data were used to quantify the agreement and relationship between changes in dynamic and isometric strength. Methods : Databases were systematically searched to identify eligible articles, and meta-analysis procedures were performed on the extracted data. The raw results from 4 studies were acquired, enabling bias and absolute reliability measures to be calculated using Bland–Altman test of agreement. Results: Eleven studies met the inclusion criteria, which resulted in 29 isometric–dynamic change comparisons. The overall pooled effect was 0.13 in favor of dynamic testing; however, the prediction interval ranged from g = −0.49 to 0.75. There was no evidence of bias (P = .825) between isometric and dynamic tests; however, the reliability coefficient was estimated to be 16%, and the coefficient of variation (%) was 109.27. Conclusions: As a range of future effects can be expected when comparing isometric to dynamic strength changes following resistance training, and limited proportionality exists between changes in these 2 strength qualities, there is strong evidence that isometric and dynamic strength represent separate neuromuscular domains. These findings can be used to inform strength-assessment models in athlete populations.
The Relationship Between Lower-Body Force–Time Variables and Skating Performance in Female Ice Hockey Players
Mary C. Geneau, Ming-Chang Tsai, Dana Agar-Newman, Daniel J. Geneau, Marc Klimstra, and Lachlan P. James
Purpose: Ice hockey is a team invasion sport characterized by repeated high-intensity skating efforts, technical and tactical skill, physical contact, and collisions requiring considerable levels of muscular strength. The purpose of this study was to evaluate the relationships between lower-body vertical force–time metrics and skating qualities in subelite female ice hockey players. Methods: A cross-sectional cohort design was employed utilizing 14 athletes (body mass = 66.7 [1.8] kg; height = 171.6 [6.2] cm; age = 21.1 [1.7] y). The relationships between metrics of lower-body strength collected from a drop jump, squat jump, countermovement jump, loaded countermovement jump, and an isometric squat and 4 skating qualities collected from a linear sprint, repeated sprint test, and a multistage aerobic test were evaluated. Results: The regression models revealed a positive relationship between relative peak force in the isometric squat and skating multistage aerobic test performance (r 2 = .388; P = .017) and a positive relationship between repeated-sprint ability and eccentric mean force during the loaded countermovement jump (r 2 = .595; P = .001). No significant relationships were observed between strength metrics and skating acceleration or maximal velocity. Conclusions: These data suggest that skating ability is most affected by relative isometric strength in female ice hockey players. It is recommended that practitioners focus training on tasks that improve relative force output. It is also recommended that isometric relative peak force be used as a monitoring metric for this cohort.
Benefits of Training the Iron Cross With Herdos Devices and External Load Added to Body Weight for Young Nonachiever Gymnasts
Michel Marina, Priscila Torrado, Blai Ferrer-Uris, and Albert Busquets
Purpose: To verify whether training the iron cross (IC) with assistive devices (herdos; HIC) and added external load (LHIC) to equate the moments of force developed on the rings could be considered an intermediate step between the nonoverloaded herdos situation (HIC) and the IC performed on the rings. Methods: Relative levels of surface electromyography (sEMG) activity were normalized with respect to a standing IC before comparing gymnasts who can perform the IC on the rings (achievers) and gymnast who cannot (nonachievers) in the 2 herdos conditions (HIC and LHIC). Seven muscles were chosen for sEMG analysis, namely, pectoralis major (PM), latissimus dorsi, teres major, lower trapezius, serratus anterior, biceps brachii (BB), and triceps brachii. Additionally, 3 indices were calculated to measure levels of coactivation: Elbowidx, Scapulaidx, and Shoulderidx. Results: The bigger magnitude of differences in sEMG activity among situations was found for the PM and BB (F ≥ 30.7; P < .001). When comparing the global and the PM, teres major, BB, and triceps brachii activity across groups, nonachievers activated their musculature to a greater extent than the achievers independently of the herdos situation (P ≤ .046). Achievers’ Elbowidx was the only index that was significantly higher (P ≤ .005) in the IC in comparison to LHIC and HIC. Conclusion: sEMG activity of PM and BB was particularly sensitive between situations, independently of the level of achievement. We recommend training the IC by adding external load in the herdos situation to increase muscle activity to levels closer to the rings situation but avoiding the potential factor of injuries.
Erratum. Determinants of 1500-m Front-Crawl Swimming Performance in Triathletes: Influence of Physiological and Biomechanical Variables
International Journal of Sports Physiology and Performance
Recreational Runners Gain Physiological and Biomechanical Benefits From Super Shoes at Marathon Paces
Giorgos P. Paradisis, Elias Zacharogiannis, Athanassios Bissas, and Brian Hanley
Purpose: Advanced footwear technology is prevalent in distance running, with research focusing on these “super shoes” in competitive athletes, with less understanding of their value for slower runners. The aim of this study was to compare physiological and biomechanical variables between a model of super shoes (Saucony Endorphin Speed 2) and regular running shoes (Saucony Cohesion 13) in recreational athletes. Methods: We measured peak oxygen uptake (VO2peak) in 10 runners before testing each subject 4 times in a randomly ordered crossover design (ie, Endorphin shoe or Cohesion shoe, running at 65% or 80% of velocity at VO2peak [vVO2peak]). We recorded video data using a high-speed camera (300 Hz) to calculate vertical and leg stiffnesses. Results: 65% vVO2peak was equivalent to a speed of 9.4 km·h−1 (0.4), whereas 80% vVO2peak was equivalent to 11.5 km·h−1 (0.5). Two-way mixed-design analysis of variance showed that oxygen consumption in the Endorphin shoe was 3.9% lower than in the Cohesion shoe at 65% vVO2peak, with an interaction between shoes and speed (P = .020) meaning an increased difference of 5.0% at 80% vVO2peak. There were small increases in vertical and leg stiffnesses in the Endorphin shoes (P < .001); the Endorphin shoe condition also showed trivial to moderate differences in step length, step rate, contact time, and flight time (P < .001). Conclusions: There was a physiological benefit to running in the super shoes even at the slower speed. There were also spatiotemporal and global stiffness improvements indicating that recreational runners benefit from wearing super shoes.
Development and Interplay of Metabolic and Mechanical Performance Determinants Over an Annual Training Period in Adolescent National-Level Squad Swimmers
Sebastian Keller, Sanghyeon Ji, Joshua F. Feuerbacher, Boris Dragutinovic, Moritz Schumann, and Patrick Wahl
Purpose: The study examined the longitudinal interplay of anthropometric, metabolic, and neuromuscular development related to performance in adolescent national-level swimmers over 12 months.
Methods: Seven male and 12 female swimmers (14.8 [1.3] y, FINA [International Swimming Federation] points 716 [51]) were tested before (T0) and after the preparation period (T1), at the season’s peak (T2), and before the next season (T3). Anthropometric (eg, fat percentage) and neuromuscular parameters (squat and bench-press load-velocity profile) were assessed on dry land. Metabolic (cost of swimming [C], maximal oxygen uptake [