Browse

You are looking at 241 - 250 of 1,863 items for :

  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: All Content x
Clear All
Restricted access

Quinine Ingestion During the Latter Stages of a 3,000-m Time Trial Fails to Improve Cycling Performance

Naroa Etxebarria, Brad Clark, Megan L. Ross, Timothy Hui, Roland Goecke, Ben Rattray, and Louise M. Burke

The ingestion of quinine, a bitter tastant, improves short-term (30 s) cycling performance, but it is unclear whether this effect can be integrated into the last effort of a longer race. The purpose of this study was to determine whether midtrial quinine ingestion improves 3,000-m cycling time-trial (TT) performance. Following three familiarization TTs, 12 well-trained male cyclists (mean ± SD: mass = 76.6 ± 9.2 kg, maximal aerobic power = 390 ± 50 W, maximal oxygen uptake = 4.7 ± 0.6 L/min) performed four experimental 3,000-m TTs on consecutive days. This double-blind, crossover design study had four randomized and counterbalanced conditions: (a) Quinine 1 (25-ml solution, 2 mM of quinine); (b) Quinine 2, replicate of Quinine 1; (c) a 25-ml sweet-tasting no-carbohydrate solution (Placebo); and (d) 25 ml of water (Control) consumed at the 1,850-m point of the TT. The participants completed a series of perceptual scales at the start and completion of all TTs, and the power output was monitored continuously throughout all trials. The power output for the last 1,000 m for all four conditions was similar: mean ± SD: Quinine 1 = 360 ± 63 W, Quinine 2 = 367 ± 63 W, Placebo = 364 ± 64 W, and Control = 367 ± 58 W. There were also no differences in the 3,000-m TT power output between conditions. The small perceptual differences between trials at specific 150-m splits were not explained by quinine intake. Ingesting 2 mM of quinine during the last stage of a 3,000-m TT did not improve cycling performance.

Restricted access

Development of a “Cooling” Menthol Energy Gel for Endurance Athletes: Effect of Menthol Concentration on Acceptability and Preferences

Christopher J. Stevens, Megan L.R. Ross, and Roxanne M. Vogel

Menthol is effective at stimulating thermosensitive neurons that evoke pleasant cooling sensations. Internal application of menthol can be ergogenic for athletes, and hence, addition of menthol to sports nutrition products may be beneficial for athletes. The aim of this study was to develop a menthol energy gel for consumption during exercise and to determine acceptability and preferences for gels with different menthol concentrations. With a randomized, crossover, and double-blind placebo-controlled design, 40 endurance athletes (20 females) ingested an energy gel with a menthol additive at a high (0.5%; HIGH) or low concentration (0.1%; LOW), or a mint-flavored placebo (CON), on separate occasions during outdoor endurance training sessions. The athletes rated the gels for cooling sensation, mint flavor intensity, sweetness, and overall experience and provided feedback. Results are reported as median (interquartile range). Both menthol gels successfully delivered a cooling sensation, with a significantly greater response for HIGH (5.0 [4.0–5.0]) compared with LOW (3.5 [3.0–4.0]; p = .022) and CON (1.0 [1.0–2.0]; p < .0005), and LOW compared with CON (p < .0005). Ratings of mint flavor intensity followed the same trend as cooling sensation, while ratings of overall experience were significantly worse for HIGH (2.0 [1.0–3.0]) compared with LOW (4.0 [2.0–4.0]; p = .001) and CON (4.0 [3.0–4.0]; p < .0005). An energy gel with the addition of menthol at 0.1–0.5% provides a cooling sensation for athletes with a dose–response when ingested during exercise. The 0.1% concentration is recommended to maximize the overall experience of the gel.

Restricted access

Inspiratory Muscle Training on Glucose Control in Diabetes: A Randomized Clinical Trial

Mariana B. Pinto, Patrícia M. Bock, Andressa S.O. Schein, Juliana Portes, Raíssa B. Monteiro, and Beatriz D. Schaan

This study evaluated the effects of inspiratory muscle training (IMT) in glucose control and respiratory muscle function in patients with diabetes. It was a randomized clinical trial conducted at the Physiopathology Laboratory of the Hospital de Clínicas de Porto Alegre. Patients with Type 2 diabetes were randomly assigned to IMT or placebo-IMT (P-IMT), performed at 30% and 2% of maximal inspiratory pressure, respectively, every day for 12 weeks. The main outcome measures were HbA1c, glycemia, and respiratory muscle function. Thirty patients were included: 73.3% women, 59.6 ± 10.7 years old, HbA1c 8.7 ± 0.9% (71.6 ± 9.8 mmol/mol), and glycemia 181.8 ± 57.8 mg/dl (10.5 ± 3.2 mmol/L). At the end of the training, HbA1c was 8.2 ±0.3% (66.1 ± 3.3 mmol/mol) and 8.7 ± 0.3% (71.6 ± 3.3 mmol/mol) for the IMT and P-IMT groups, respectively (p = .8). Fasting glycemia decreased in both groups with no difference after training although it was lower in IMT at 8 weeks: 170.0 ± 11.4 mg/dl(9.4 ± 0.6 mmol/L) and 184.4 ± 15.0 mg/dl (10.2 ± 0.8 mmol/L) for IMT and P-IMT, respectively (p < .05). Respiratory endurance time improved in the IMT group (baseline = 325.9 ± 51.1 s and 305.0 ± 37.8 s; after 12 weeks = 441.1 ± 61.7 s and 250.7 ± 39.0 s for the IMT and P-IMT groups, respectively; p < .05). Considering that glucose control did not improve, IMT should not be used as an alternative to other types of exercise in diabetes. Higher exercise intensities or longer training periods might produce better results. The clinical trials identifier is NCT 03191435.

Restricted access

Effects of Collagen Peptides on Recovery Following Eccentric Exercise in Resistance-Trained Males—A Pilot Study

Joel L. Prowting, Debra Bemben, Christopher D. Black, Eric A. Day, and Jason A. Campbell

The authors sought to determine whether consuming collagen peptides (CP) enhances musculoskeletal recovery of connective tissues following a damaging exercise bout. Resistance-trained males consumed 15 g/day of CP (n = 7) or placebo (n = 8), and after 7 days, maximal voluntary isometric contraction (MVIC), countermovement jump height, soreness, and collagen turnover were examined. Five sets of 20 drop jumps were performed and outcome measures were collected 24, 48, and 120 hr postexercise. Countermovement jump height was maintained in the CP group at 24 hr (PRE = 39.9 ± 8.8 cm vs. 24 hr = 37.9 ± 8.9 cm, p = .102), whereas the CP group experienced a significant decline at 24 hr (PRE = 40.4 ± 7.9 cm vs. 24 hr = 35.5 ± 6.4 cm, p = .001; d = 0.32). In both groups, muscle soreness was significantly higher than PRE at 24 hr (p = .001) and 48 hr (p = .018) but not at 120 hr (p > .05). MVIC in both legs showed a significant time effect (left: p = .007; right: p = .010) over the 5-day postexercise period. Neither collagen biomarker changed significantly at any time point. CP supplementation attenuated performance decline 24 hr following muscle damage. Acute consumption of CP may provide a performance benefit the day following a bout of damaging exercise in resistance-trained males.

Restricted access

No Effects of Different Doses of New Zealand Blackcurrant Extract on Cardiovascular Responses During Rest and Submaximal Exercise Across a Week in Trained Male Cyclists

Stefano Montanari, Mehmet A. Şahin, Ben J. Lee, Sam D. Blacker, and Mark E.T. Willems

Supplementation with anthocyanin-rich blackcurrant increases blood flow, cardiac output, and stroke volume at rest. It is not known whether cardiovascular responses can be replicated over longer timeframes in fed trained cyclists. In a randomized, double-blind, crossover design, 13 male trained cyclists (age 39 ± 10 years, V ˙ O 2 max 55.3 ± 6.7 ml·kg−1·min−1) consumed two doses of New Zealand blackcurrant (NZBC) extract (300 and 600 mg/day for 1 week). Cardiovascular parameters were measured during rest and submaximal cycling (65% V ˙ O 2 max ) on day 1 (D1), D4, and D7. Data were analyzed with an RM ANOVA using dose (placebo vs. 300 vs. 600 mg/day) by time point (D1, D4, and D7). Outcomes from placebo were averaged to determine the coefficient of variation within our experimental model, and 95% confidence interval (CI) was examined for differences between placebo and NZBC. There were no differences in cardiovascular responses at rest between conditions and between days. During submaximal exercise, no positive changes were observed on D1 and D4 after consuming NZBC extract. On D7, intake of 600 mg increased stroke volume (3.08 ml, 95% CI [−2.08, 8.26]; d = 0.16, p = .21), cardiac output (0.39 L/min, 95% CI [−1.39, .60]; d = 0.14, p = .40) (both +2.5%), and lowered total peripheral resistance by 6.5% (−0.46 mmHg·min/ml, 95% CI [−1.80, .89]; d = 0.18, p = .46). However, these changes were trivial and fell within the coefficient of variation of our study design. Therefore, we can conclude that NZBC extract was not effective in enhancing cardiovascular function during rest and submaximal exercise in endurance-trained fed cyclists.

Full access

Short-Term Precision Error of Body Composition Assessment Methods in Resistance-Trained Male Athletes

Ava Farley, Gary J. Slater, and Karen Hind

Athletic populations require high-precision body composition assessments to identify true change. Least significant change determines technical error via same-day consecutive tests but does not integrate biological variation, which is more relevant for longitudinal monitoring. The aim of this study was to assess biological variation using least significant change measures from body composition methods used on athletes, including surface anthropometry (SA), air displacement plethysmography (BOD POD), dual-energy X-ray absorptiometry (DXA), and bioelectrical impedance spectroscopy (BIS). Thirty-two athletic males (age = 31 ± 7 years; stature = 183 ± 7 cm; mass = 92 ± 10 kg) underwent three testing sessions over 2 days using four methods. Least significant change values were calculated from differences in Day 1 Test 1 versus Day 1 Test 2 (same-day precision), as well as Day 1 Test 1 versus Day 2 (consecutive-day precision). There was high agreement between same-day and consecutive-day fat mass and fat-free mass measurements for all methods. Consecutive-day precision error in comparison with the same-day precision error was 50% higher for fat mass estimates from BIS (3,607 vs. 2,331 g), 25% higher from BOD POD (1,943 vs. 1,448 g) and DXA (1,615 vs. 1,204 g), but negligible from SA (442 vs. 586 g). Consecutive-day precision error for fat-free mass was 50% higher from BIS (3,966 vs. 2,276 g) and SA (1,159 vs. 568 g) and 25% higher from BOD POD (1,894 vs. 1,450 g) and DXA (1,967 vs. 1,461 g) than the same-day precision error. Precision error in consecutive-day analysis considers both technical error and biological variation, enhancing the identification of small, yet significant changes in body composition of resistance-trained male athletes. Given that change in physique is likely to be small in this population, the use of DXA, BOD POD, or SA is recommended.

Restricted access

Volume 30 (2020): Issue 6 (Nov 2020)

Open access

Short-Term, Combined Fasting and Exercise Improves Body Composition in Healthy Males

Giuseppe delli Paoli, Denise van de Laarschot, Edith C.H. Friesema, Remco Verkaik, Antonia Giacco, Rosalba Senese, Pascal P. Arp, P. Mila Jhamai, Stefano M. Pagnotta, Linda Broer, André G. Uitterlinden, Antonia Lanni, M. Carola Zillikens, and Pieter de Lange

Fasting enhances the beneficial metabolic outcomes of exercise; however, it is unknown whether body composition is favorably modified on the short term. A baseline–follow-up study was carried out to assess the effect of an established protocol involving short-term combined exercise with fasting on body composition. One hundred seven recreationally exercising males underwent a 10-day intervention across 15 fitness centers in the Netherlands involving a 3-day gradual decrease of food intake, a 3-day period with extremely low caloric intake, and a gradual 4-day increase to initial caloric intake, with daily 30-min submaximal cycling. Using dual-energy X-ray absorptiometry analysis, all subjects substantially lost total body mass (−3.9 ± 1.9 kg; p < .001) and fat mass (−3.3 ± 1.3 kg; p < .001). Average lean mass was lost (−0.6 ± 1.5 kg; p < .001), but lean mass as a percentage of total body mass was not reduced. The authors observed a loss of −3.9 ± 1.9% android fat over total fat mass (p < .001), a loss of −2.2 ± 1.9% gynoid over total fat mass (p < .001), and reduced android/gynoid ratios (−0.05 ± 0.1; p < .001). Analyzing 15 preselected single-nucleotide polymorphisms in 13 metabolism-related genes revealed trending associations for thyroid state–related single-nucleotide polymorphisms rs225014 (deiodinase 2) and rs35767 (insulin-like growth factor1), and rs1053049 (PPARD). In conclusion, a short period of combined fasting and exercise leads to a substantial loss of body and fat mass without a loss of lean mass as a percentage of total mass.

Restricted access

Caffeinated Chewing Gum Improves Bicycle Motocross Time-Trial Performance

Amin Daneshfar, Carl J. Petersen, Majid S. Koozehchian, and Daniel E. Gahreman

This study aimed to identify the acute effects of caffeinated chewing gum (CAF) on bicycle motocross (BMX) time-trial (TT) performance. In a randomized, placebo-controlled, double-blind cross-over design, 14 male BMX riders (age = 20.0 ± 3.3 years; height = 1.78 ± 0.04 m; body mass = 72 ± 4 kg), consumed either (300 mg; 4.2 ± 0.2 mg/kg) caffeinated (300 mg caffeine, 6 g sugars) or a placebo (0 mg caffeine, 0 g sugars) gum, and undertook three BMX TTs. Repeated-measure analysis revealed that CAF has a large ergogenic effect on TT time, F(1, 14) = 33.570, p = .001, η p 2 = .71 ; −1.5% ± 0.4 compared with the placebo. Peak power and maximal power to weight ratio also increased significantly compared with the placebo condition, F(1, 14) = 54.666, p = .001, η p 2 = .79 ; +3.5% ± 0.6, and F(1, 14) = 57.399, p = .001, η p 2 = .80 ; +3% ± 0.3, respectively. Rating of perceived exertion was significantly lower F(1, 14) = 25.020, p = .001, η p 2 = .64 in CAF (6.6 ± 1.3) compared with the placebo (7.2 ± 1.7). Administering a moderate dose (300 mg) of CAF could improve TT time by enhancing power and reducing the perception of exertion. BMX coaches and riders may consider consuming CAF before a BMX race to improve performance and reduce rating of perceived exertion.

Open access

Rank, Remit, and Resources

James A. Betts