Purpose: This study examined whether a higher protein diet following strenuous exercise can alter markers of muscle damage and inflammation in older adults.
Methods: Using a double-blind, independent group design, 10 males and eight females (age 57 ± 4 years; mass 72.3 ± 5.6 kg; height 1.7 ± 6.5 m) were supplied with a higher protein (2.50 g·kg−1·day−1) or moderate protein (1.25 g·kg−1·day−1) diet for 48 hr after 140 squats with 25% of their body mass. Maximal isometric voluntary contractions, muscle soreness, creatine kinase, Brief Assessment of Mood Adapted, and inflammatory markers were measured preexercise, and 24 hr and 48 hr postexercise.
Results: The maximal isometric voluntary contractions decreased postexercise (p = .001,
Browse
The Effects of a High-Protein Diet on Markers of Muscle Damage Following Exercise in Active Older Adults: A Randomized, Controlled Trial
Tom Clifford, Eleanor J. Hayes, Jadine H. Scragg, Guy Taylor, Kieran Smith, Kelly A. Bowden Davies, and Emma J. Stevenson
The Effects of Caffeine Mouth Rinsing on Exercise Performance: A Systematic Review
Alex M. Ehlert, Hannah M. Twiddy, and Patrick B. Wilson
Caffeine ingestion can improve performance across a variety of exercise modalities but can also elicit negative side effects in some individuals. Thus, there is a growing interest in the use of caffeine mouth rinse solutions to improve sport and exercise performance while minimizing caffeine’s potentially adverse effects. Mouth rinse protocols involve swilling a solution within the oral cavity for a short time (e.g., 5–10 s) before expectorating it to avoid systemic absorption. This is believed to improve performance via activation of taste receptors and stimulation of the central nervous system. Although reviews of the literature indicate that carbohydrate mouth rinsing can improve exercise performance in some situations, there has been no attempt to systematically review the available literature on caffeine mouth rinsing and its effects on exercise performance. To fill this gap, a systematic literature search of three databases (PubMed, SPORTDiscus, and Web of Science) was conducted by two independent reviewers. The search resulted in 11 randomized crossover studies that were appraised and reviewed. Three studies found significant positive effects of caffeine mouth rinsing on exercise performance, whereas the remaining eight found no improvements or only suggestive benefits. The mixed results may be due to heterogeneity in the methods across studies, interindividual differences in bitter tasting, and differences in the concentrations of caffeine solutions. Future studies should evaluate how manipulating the concentration of caffeine solutions, habitual caffeine intake, and genetic modifiers of bitter taste influence the efficacy of caffeine mouth rinsing as an ergogenic strategy.
Sodium Bicarbonate Supplementation Does Not Improve Running Anaerobic Sprint Test Performance in Semiprofessional Adolescent Soccer Players
Rodrigo dos Santos Guimarães, Alcides Correa de Morais Junior, Raquel Machado Schincaglia, Bryan Saunders, Gustavo Duarte Pimentel, and João Felipe Mota
Ergogenic strategies have been studied to alleviate muscle fatigue and improve sports performance. Sodium bicarbonate (NaHCO3) has improved repeated sprint performance in adult team-sports players, but the effect for adolescents is unknown. The aim of the present study was to evaluate the effect of NaHCO3 supplementation on repeated sprint performance in semiprofessional adolescent soccer players. In a double-blind, placebo-controlled, crossover trial, 15 male semiprofessional adolescent soccer players (15 ± 1 years; body fat 10.7 ± 1.3%) ingested NaHCO3 or a placebo (sodium chloride) 90 min before performing the running anaerobic sprint test (RAST). A countermovement jump was performed before and after the RAST, and ratings of perceived exertion, blood parameters (potential hydrogen and bicarbonate concentration), and fatigue index were also evaluated. Supplementation with NaHCO3 promoted alkalosis, as demonstrated by the increase from the baseline to preexercise, compared with the placebo (potential hydrogen: +0.07 ± 0.01 vs. −0.00 ± 0.01, p < .001 and bicarbonate: +3.44 ± 0.38 vs. −1.45 ± 0.31 mmol/L, p < .001); however, this change did not translate into an improvement in RAST total time (32.12 ± 0.30 vs. 33.31 ± 0.41 s, p = .553); fatigue index (5.44 ± 0.64 vs. 6.28 ± 0.64 W/s, p = .263); ratings of perceived exertion (7.60 ± 0.33 vs. 7.80 ± 0.10 units, p = .525); countermovement jump pre-RAST (32.21 ± 3.35 vs. 32.05 ± 3.51 cm, p = .383); or countermovement jump post-RAST (31.70 ± 0.78 vs. 32.74 ± 1.11 cm, p = .696). Acute NaHCO3 supplementation did not reduce muscle fatigue or improve RAST performance in semiprofessional adolescent soccer players. More work assessing supplementation in this age group is required to increase understanding in the area.
Acute Consumption of Varied Doses of Cocoa Flavanols Does Not Influence Exercise-Induced Muscle Damage
Liam D. Corr, Adam Field, Deborah Pufal, Jenny Killey, Tom Clifford, Liam D. Harper, and Robert J. Naughton
Polyphenol consumption has become a popular method of trying to temper muscle damage. Cocoa flavanols (CF) have attracted attention due to their high polyphenol content and palatability. As such, this study will investigate whether an acute dose of CF can aid recovery following exercise-induced muscle damage. The study was a laboratory-based, randomized, single-blind, nutrient-controlled trial involving 23 participants (13 females and 10 males). Participants were randomized into either control ∼0 mg CF (n = 8, four females); high dose of 830 mg CF (CF830, n = 8, five females); or supra dose of 1,245 mg CF (CF1245, n = 7, four females). The exercise-induced muscle damage protocol consisted of five sets of 10 maximal concentric/eccentric hamstring curls and immediately consumed their assigned drink following completion. To measure muscle recovery, maximal voluntary isometric contraction (MVIC) of the knee flexors at 60° and 30°, a visual analog scale (VAS), and lower-extremity function scale were taken at baseline, immediately, 24-, 48-, and 72-hr postexercise-induced muscle damage. There was a main effect for time for all variables (p < .05). However, no significant differences were observed between groups for all measures (p ≥ .17). At 48 hr, there were large effect sizes between control and CF1245 for MVIC60 (p = .17, d = 0.8); MVIC30 (p = .26, d = 0.8); MVIC30 percentage change (p = .24 d = 0.9); and visual analog scale (p = .25, d = 0.9). As no significant differences were observed following the consumption of CF, there is reason to believe that CF offer no benefit for muscle recovery when ingested acutely.
Worth the Weight? Post Weigh-In Rapid Weight Gain is Not Related to Winning or Losing in Professional Mixed Martial Arts
Christopher Kirk, Carl Langan-Evans, and James P. Morton
Body mass (BM) manipulation via rapid weight loss (RWL) and rapid weight gain (RWG) is a common practice among mixed martial art (MMA) athletes to ensure qualification for the division in which the athlete wishes to compete. Professional MMA competitors in California are required to weigh in twice: 24 hr prior to competition and immediately prior to the bout after they have typically engaged in RWG. In analyzing data from five MMA events sanctioned by the Californian State Athletic Commission, the authors used Bayesian analyses to compare bout winners (n = 62) and losers (n = 62) in terms of in-competition BM (in kilograms) and the amount of BM regained between the two weigh-ins (in kilograms). These data do not support the hypothesis that differences in in-competition BM (Bayes factor [BF10] = 0.667, d = 0.23) or the amount of BM regained between the two weigh-ins (BF10 = 0.821, d = 0.23) determine winning or losing. In addition, there was no statistical difference between bouts ending via strikes, submission, or decision for either in-competition BM (BF10 = 0.686, ω2 < 0.01) or the amount of BM regained between the two weigh-ins (BF10 = 0.732, ω2 = 0.054). In conclusion, the authors report for the first time that the magnitude of RWG does not predict winning or losing in a professional cohort of MMA athletes. In addition, they also report that MMA athletes typically compete at a BM that is at least 1–2 divisions higher than the division in which they officially weighed-in. These analyses may provide impetus for governing bodies and coaches to enact changes at both professional and amateur levels to reduce negative health consequences associated with extreme RWL and RWG.
Volume 30 (2020): Issue 4 (Jul 2020)
Erratum: Campbell et al. 2018
Erratum: Sugihara Junior et al. 2018
Erratum: Anderson et al. (2019)
No Differences Between Beetroot Juice and Placebo on Competitive 5-km Running Performance: A Double-Blind, Placebo-Controlled Trial
Philip Hurst, Samantha Saunders, and Damian Coleman
The authors examine the effect of an acute dose of beetroot juice on endurance running performance in “real-world” competitive settings. In total, 70 recreational runners (mean ± SD: age = 33.3 ± 12.3 years, training history = 11.9 ± 8.1 years, and hours per week training = 5.9 ± 3.5) completed a quasi-randomized, double-blind, placebo-controlled study of 5-km competitive time trials. Participants performed four trials separated by 1 week in the order of prebaseline, two experimental, and one postbaseline. Experimental trials consisted of the administration of 70-ml nitrate-rich beetroot juice (containing ∼4.1 mmol of nitrate, Beet It Sport®) or nitrate-depleted placebo (containing ∼0.04 mmol of nitrate, Beet It Sport®) 2.5 hr prior to time trials. Time to complete 5 km was recorded for each trial. No differences were shown between pre- and postbaseline (p = .128, coefficient variation = 2.66%). The average of these two trials is therefore used as baseline. Compared with baseline, participants ran faster with beetroot juice (mean differences = 22.2 ± 5.0 s, p < .001, d = 0.08) and placebo (22.9 ± 4.5 s, p < .001, d = 0.09). No differences in times were shown between beetroot juice and placebo (0.8 ± 5.7 s, p < .875, d = 0.00). These results indicate that an acute dose of beetroot juice does not improve competitive 5-km time-trial performance in recreational runners compared with placebo.