You are looking at 21 - 30 of 4,889 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

John H. Wearden

This article discusses material from the doctoral thesis of Wilhlem Camerer, which was devoted to the topic of the timing of voluntary movements, and appeared in 1866, thus being one of the earliest studies of any aspect of time perception. It was conducted under the supervision of Karl von Vierordt, at the University of Tübingen in Germany. The data reported come from Camerer’s attempts to make a movement over a distance of about 65 mm, either by flexion or extension of his arm, with the behavior recorded via a kymograph, and measured from its trace. Most of his data come from his attempts to make movements at a constant speed, with the speed varying from one trial to another from 5 to 60 mm/s, but he also conducted a study where the movement was intended to be accelerated or decelerated during the trial. In general, when extension movements were intended to be performed with constant speed, a gradual increase in movement speed usually occurred throughout the movement duration. For flexions the opposite occurred, albeit less clearly. Camerer linked the apparent distortions of speed to Vierordt’s experiments on the perception of time and his thesis contains what is probably the first mention of Vierordt’s Law, the proposition that short times are judged as longer, and long times as shorter, than they really are.

Restricted access

Francisco Tomás González-Fernández, Pedro Ángel Latorre-Román, Juan Parraga-Montilla, Alfonso Castillo-Rodriguez, and Filipe Manuel Clemente

The aim of this study was to analyze the acute effects of an incremental resistance test on psychomotor vigilance in 16 soccer players under-19 years old (age 16.42 ± 0.85 years). Borg 15-point subjective perception of effort scale, the psychomotor vigilance task test, and the Yo-Yo intermittent recovery test were used. Four evaluation sessions were conducted with different intensities of efforts (30%–40%, 60%–75%, 80%–90%, and 100%) on different days (counterbalanced order). A repeated-measures analysis of variance was performed in the reaction time of the psychomotor vigilance task. The results showed that participants responded faster during efforts between 80% and 90% of maximal oxygen uptake (501.20 ± 70.77 ms). From that threshold, the players decreased their performance through a longer reaction time (601.23 ± 85.05 ms; p value < .001). The main findings were that the reaction time performance was worse at the lowest and highest effort conditions (5 and 17 km/hr, respectively). This fact helps to focus on the importance of designing and proposing training tasks with medium–high efforts to provoke optimal reaction times in young soccer players.

Restricted access

Kundan Joshi and Blake M. Ashby

Experimental motion capture studies have commonly considered the foot as a single rigid body even though the foot contains 26 bones and 30 joints. Various methods have been applied to study rigid body deviations of the foot. This study compared 3 methods: distal foot power (DFP), foot power imbalance (FPI), and a 2-segment foot model to study foot power and work in the takeoff phase of standing vertical jumps. Six physically active participants each performed 6 standing vertical jumps from a starting position spanning 2 adjacent force platforms to allow ground reaction forces acting on the foot to be divided at the metatarsophalangeal (MTP) joints. Shortly after movement initiation, DFP showed a power absorption phase followed by a power generation phase. FPI followed a similar pattern with smaller power absorption and a larger power generation compared to DFP. MTP joints primarily generated power in the 2-segment model. The net foot work was –4.0 (1.0) J using DFP, 1.8 (1.1) J using FPI, and 5.1 (0.5) J with MTP. The results suggest that MTP joints are only 1 source of foot power and that differences between DFP and FPI should be further explored in jumping and other movements.

Full access

Amanda E. Munsch, Alyssa Evans-Pickett, Hope Davis-Wilson, Brian Pietrosimone, and Jason R. Franz

Insufficient quadriceps force production and altered knee joint biomechanics after anterior cruciate ligament reconstruction (ACLR) may contribute to a heightened risk of osteoarthritis. Quadriceps muscle lengthening dynamics affect force production and knee joint loading; however, no study to our knowledge has quantified in vivo quadriceps dynamics during walking in individuals with ACLR or examined correlations with joint biomechanics. Our purpose was to quantify bilateral vastus lateralis (VL) fascicle length change and the association thereof with gait biomechanics during weight acceptance in individuals with ACLR. The authors hypothesized that ACLR limbs would exhibit more fascicle lengthening than contralateral limbs. The authors also hypothesized that ACLR limbs would exhibit positive correlations between VL fascicle lengthening and knee joint biomechanics during weight acceptance in walking. The authors quantified VL contractile dynamics via cine B-mode ultrasound imaging in 18 individuals with ACLR walking on an instrumented treadmill. In partial support of our hypothesis, ACLR limb VL fascicles activated without length change on average during weight acceptance while fascicle length on the contralateral limb decreased on average. The authors found a positive association between fascicle lengthening and increase in knee extensor moments in both limbs. Our results suggest that examining quadriceps muscle dynamics may elucidate underlying mechanisms relevant to osteoarthritis.

Restricted access

Jin Bo, Bo Shen, Liangsan Dong, YanLi Pang, Yu Xing, Mingting Zhang, Yuan Xiang, Patricia C. Lasutschinkow, and Dan Li

Difficulty with implicit learning plays an important role in the symptomology of autism spectrum disorder (ASD). However, findings in motor learning are inconsistent. This study evaluated implicit sequence learning and its relationship with motor ability in children with and without ASD. We adopted a classic serial reaction time task with a retention task and three awareness tests. The Movement Assessment Battery for Children was administered to assess children’s motor ability. Significant learning differences between children with and without ASD were only found in retention but not immediately after the serial reaction time task. These findings suggest that the impaired implicit learning in ASD is characterized as impaired consolidation where the relatively permanent changes are missing. Exploratory moderation analyses revealed a significant relationship between implicit learning and motor ability for individuals with faster response time. We argue the importance of response speed for optimal learning and should be weighted more for future intervention in children with ASD.

Restricted access

Yavuz Lima, Sergen Devran, Tom Webb, and Bülent Bayraktar

Although referees who officiate in the amateur football leagues are exposed to various stressors that can negatively affect their mental health (MH), little is known about their MH symptoms. The purpose of the study was to evaluate MH symptoms of referees who officiate in the Turkish amateur football leagues. An online survey was sent to all referees in the Turkish amateur football leagues (n = 4,900) incorporating standardized scales assessing depression, anxiety, and stress. A total of 1,279 referees participated in the study. Female referees reported higher depression (p < .01) and anxiety (p = .02) scores than males. Younger referees (23–27 years) reported higher depression (p = .01) and anxiety (p < .01) scores than older (>38 years) referees. Results showed that symptoms of depression, anxiety, and stress scores were associated with marital status (being single), lower incomes, severe sports injury history, and inadequate social support. In light of these results, MH assessments should be undertaken to detect which referees are at greater risk of MH problems and facilitate appropriate and timely MH interventions. Further study is needed to inform MH risk reduction strategies and/or programming.

Restricted access

Michael E. O’Connell, Kyle E. Lindley, John O. Scheffey, Alex Caravan, Joseph A. Marsh, and Anthony C. Brady

Long-term training effects of weighted ball throwing programs have been well documented. However, the mechanisms that facilitate these effects are poorly understood. The purpose of this study is to investigate within-session effects of throwing overload and underload baseballs to provide mechanistic evidence for weighted baseball training methods. Twenty-six collegiate- and professional-level baseball pitchers aged 20–30 years (mean age 23.5 [2.7] y) participated in a biomechanical evaluation while pitching a series of leather weighted baseballs. A 1-way repeated-measures analysis of variance was used to evaluate the intrasubject effect of ball weight on a total of 15 kinematic, kinetic, and performance parameters. Ball weight significantly affected pitch velocity, maximum elbow flexion, maximum pelvis rotation velocity, maximum shoulder internal rotation velocity, maximum elbow extension velocity, and anterior trunk tilt at ball release. None of the measured arm joint kinetics were significantly affected by ball weight. Training with 3- to 7-ounce (85- to 198-g) baseballs can be used to work on increasing pitching velocity without increasing throwing arm joint kinetics.

Full access

Mark Hollands, Fuengfa Khobkhun, Amornpan Ajjimaporn, Rebecca Robins, and Jim Richards

A limitation of the ability to rotate the head with respect to the upper body has been associated with turning problems; however, the extent of head constraints on whole-body coordination has not been fully determined. The aim of this study was to limit head on body rotation and observe the effects on whole-body coordination during standing turns at various speeds. Twelve participants completed standing turns at 180°. A Vicon motion system and a BlueGain Electrooculography system were used to record movement kinematics and measure horizontal eye movements, respectively. All participants were tested at 3 randomized speeds, and under 2 conditions with or without their head constrained using a head, neck, and chest brace which restricted neck movement. A repeated-measures analysis of variance found a significant main effect of turning speed on the onset latency of all segments, peak head–thorax angular separation, and step characteristics. Constraining the head rotation had multiple significant effects including delayed onset latency and decreased intersegmental coordination defined as peak head segmental angular separations, increased total step and step duration, and decreased step size. This indicates the contribution of speed, head, and neck constraints, which have been associated with falls during turning and whole-body coordination.

Restricted access

Paul N. Goncharow and Shawn M. Beaudette

The purpose of this research was to evaluate the algorithm DeepLabCut (DLC) against a 3D motion capture system (Vicon Motion Systems Ltd) in the analysis of lumbar and elbow flexion–extension movements. Data were acquired concurrently and tracked using DLC and Vicon. A novel DLC model was trained using video data derived from a subset of participants (training group). Accuracy and precision were assessed using data derived from the training group as well as in a new set of participants (testing group). Two-way analysis of variance were used to detect significant differences between the training and testing sets, capture methods (Vicon vs DLC), as well as potential higher order interaction effect between these independent variables in the estimation of flexion–extension angles and variability. No significant differences were observed in any planar angles, nor were any higher order interactions observed between each motion capture modality with the training versus testing data sets. Bland–Altman plots were used to depict the mean bias and level of agreement between DLC and Vicon for both training and testing data sets. This research suggests that DLC-derived planar kinematics of both the elbow and lumbar spine are of acceptable accuracy and precision when compared with conventional laboratory gold standards (Vicon).

Restricted access

Michael VanNostrand, Brittany Belanger, Gabriel Purin, Susan L. Kasser, and Michael Cannizzaro

The present study expands on current understanding of dual-task cognitive-motor interference, by including cortical activation measures to both traditional and ecologically valid dual-task paradigms. Fifteen individuals with multiple sclerosis and 14 control participants underwent mobility testing while wearing functional near-infrared spectroscopy. In the absence of increased prefrontal cortical activation, subjects with multiple sclerosis performed significantly worse on measures of cognition under both single- and dual-task conditions. These findings suggest that persons with multiple sclerosis may be unable to allocate additional cortical resources to cognition under dual-task conditions, leading to significant cognitive-motor interference and decrements in performance. This study is the first to investigate cortical activation across several commonly used and ecologically valid dual-task assessments.