You are looking at 31 - 40 of 28,686 items for :

  • All content x
Clear All
Restricted access

Junyeon Won, Alfonso J. Alfini, Lauren R. Weiss, James M. Hagberg and J. Carson Smith

Purpose: To examine the effects of a 10-day exercise-training cessation on semantic memory functional activation in older distance runners. Methods: Ten master runners (62.6 ± 7.0 years) with a long-term endurance-training history (29.0 ± 6.0 years) underwent a 10-day training cessation. Before and immediately after the training cessation, semantic memory activation was measured during the famous name recognition task, using functional magnetic resonance imaging. Results: The 10-day training cessation resulted in greater semantic memory activation in three brain regions, including the left inferior frontal gyrus, parahippocampal gyrus, and inferior semilunar lobule. The 10-day training cessation did not significantly alter famous name recognition task performance. Conclusions: The findings demonstrate that even a relatively short period without exercise training alters the functional activation patterns of semantic memory–related neural networks. Increased semantic memory activation after training cessation may indicate reduced neural efficiency during successful memory retrieval.

Restricted access

Alfredo Bravo-Sánchez, Pablo Abián, Filipa Sousa, Fernando Jimenez and Javier Abián-Vicén

Regular sport practice could prevent age-related changes in tendinous tissues. The purpose of the study was to investigate the effect of regular badminton practice on patellar and Achilles tendon mechanical properties in senior competitive badminton players (>35 years old) and to compare the results with physically active people matched by age. One hundred ninety-two badminton players and 193 physically active people were divided by age into four groups, between 35 and 44 (U45), between 45 and 54 (U55), between 55 and 64 (U65), and over 65 (O65) years old. A LogiqS8 transducer in elastography mode and a MyotonPRO myotonometer were used to assess patellar and Achilles mechanical properties. Achilles tendon stiffness was higher in the control group than the badminton players for the U45, U55, and O65 age groups (p < .01). Also, the elastography index was higher in the control group than the badminton players for the U45, U55, U65, and O65 age groups (p < .05). In conclusion, regular badminton practice could prevent the decline in mechanical properties of the patellar and Achilles tendons.

Restricted access

Veronika van der Wardt, Jennie E. Hancox, Clare Burgon, Rupinder Bajwa, Sarah Goldberg and Rowan H. Harwood

Measuring physical activity (PA) in people with mild cognitive impairment or dementia can be difficult. The aim was to investigate the validity and acceptability of three different PA measurement methods. The mixed-method analysis included 49 participants with mild cognitive impairment or dementia, who completed a daily calendar recording PA, the International Physical Activity Questionnaire, and the Longitudinal Aging Study Amsterdam PA Questionnaire, and those who wore a Misfit Shine accelerometer. The quantitative analysis showed equal completion rates for the International Physical Activity Questionnaire and the accelerometer but a lower completion rate for the calendar. Correlations between outcome measures were moderate or strong. The qualitative analysis indicated that all measures were acceptable, though some participants required help to complete the calendars or fasten the accelerometers. The study supported the validity of these methods for people with mild cognitive impairment and mild dementia. Using accelerometers and completing calendars might increase the motivation to be active for some people.

Open access

Ryoko Kawakami, Yuko Gando, Kiminori Kato, Susumu S. Sawada, Haruki Momma, Motohiko Miyachi, I-Min Lee, Steven N. Blair, Minoru Tashiro, Chika Horikawa, Yasuhiro Matsubayashi, Takaho Yamada, Kazuya Fujihara and Hirohito Sone

Background: To examine the association between muscular and performance fitness (MPF) and the incidence of glaucoma. Methods: A total of 27,051 glaucoma-free participants aged 20–87 years underwent physical fitness tests between April 2001 and March 2002. The MPF index was calculated using an age- and sex-specific summed z-score from grip strength, vertical jump, single-leg balance, forward bending, and whole-body reaction time. The participants were divided into quartiles according to the MPF index and each physical fitness test. Participants were followed up for the development of glaucoma, which was defined based on physician-diagnosed glaucoma at an annual health examination between April 2002 and March 2008. Hazard ratios for the incidence of glaucoma were estimated using Cox proportional hazards models. Results: During follow-up, 303 participants developed glaucoma. Compared with the lowest MPF index group, hazard ratio (95% confidence interval) of developing glaucoma was 0.64 (0.46–0.89) for the highest MPF index group (P for trend = .001). Vertical jump and whole-body reaction time were associated with incident glaucoma (P for trend = .01 and <.001, respectively). There were no associations between the other physical fitness tests and the incidence of glaucoma. Conclusion: Higher MPF is associated with lower incidence of glaucoma.

Open access

Roman P. Kuster, Daniel Baumgartner, Maria Hagströmer and Wilhelmus J.A. Grooten

Background: Sedentary behavior (SB) is associated with several chronic diseases and office workers especially are at increased risk. SB is defined by a sitting or reclined body posture with an energy expenditure of ≤1.5 metabolic equivalents. However, current objective methods to measure SB are not consistent with its definition. There is no consensus on which sensor placement and type should be used. Aim: To compare the accuracy of newly developed artificial intelligence models for 15 sensor placements in combination with four signal types (accelerometer only/plus gyroscope and/or magnetometer) to detect posture and physical in-/activity during desk-based activities. Method: Signal features for the model development were extracted from sensor raw data of 30 office workers performing 10 desk-based tasks, each lasting 5 min. Direct observation (posture) and indirect calorimetry (in-/activity) served as the reference criteria. The best classification model for each sensor was identified and compared among the sensor placements, both using Friedman and post hoc Wilcoxon tests (p ≤ .05). Results: Posture was most accurately measured with a lower body sensor, while in-/activity was most accurately measured with an upper body or waist sensor. The inclusion of additional signal types improved the posture classification for some placements, while the acceleration signal already contained the relevant signal information for the in-/activity classification. Overall, the thigh accelerometer most accurately classified desk-based SB. Conclusion: This study favors, in line with previous work, the measurement of SB with a thigh-worn accelerometer and adds the information that this sensor is also accurate in measuring physical in-/activity while sitting and standing.

Restricted access

Patti Millar and Julie Stevens

Past research has demonstrated that human resource training often results in improved individual and organizational performances. Yet, the focus has been on whether or not training has an impact on performance, rather than the nature of that impact. The purpose of this study is to investigate the nature of training-related outcomes in the context of one training program within the Canadian national sport sector. Interviews were conducted with key representatives from 12 Canadian national sport organizations. Findings showed the manifestations of performance change that occur as a result of training, revealing a new way of thinking at the individual level, a new way of doing within group and organizational processes, and a new way of being across organizations. Three theoretical perspectives—interpretation, learning, and institutional—are used to frame the discussion of the findings. Implications for practice and future research are presented.

Restricted access

Liana M. Tennant, Erika Nelson-Wong, Joshua Kuest, Gabriel Lawrence, Kristen Levesque, David Owens, Jeremy Prisby, Sarah Spivey, Stephanie R. Albin, Kristen Jagger, Jeff M. Barrett, James D. Wong and Jack P. Callaghan

Spinal stiffness and mobility assessments vary between clinical and research settings, potentially hindering the understanding and treatment of low back pain. A total of 71 healthy participants were evaluated using 2 clinical assessments (posteroanterior spring and passive intervertebral motion) and 2 quantitative measures: lumped mechanical stiffness of the lumbar spine and local tissue stiffness (lumbar erector spinae and supraspinous ligament) measured via myotonometry. The authors hypothesized that clinical, mechanical, and local tissue measures would be correlated, that clinical tests would not alter mechanical stiffness, and that males would demonstrate greater lumbar stiffness than females. Clinical, lumped mechanical, and tissue stiffness were not correlated; however, gradings from the posteroanterior spring and passive intervertebral motion tests were positively correlated with each other. Clinical assessments had no effect on lumped mechanical stiffness. The males had greater lumped mechanical and lumbar erector spinae stiffness compared with the females. The lack of correlation between clinical, tissue, and lumped mechanical measures of spinal stiffness indicates that the use of the term “stiffness” by clinicians may require reevaluation; clinicians should be confident that they are not altering mechanical stiffness of the spine through segmental mobility assessments; and greater resting lumbar erector stiffness in males suggests that sex should be considered in the assessment and treatment of the low back.

Restricted access

Reza Heydari Armaki, Keramatollah Abbasnia and Alireza Motealleh

Objective: Patellofemoral pain (PFP) is the most commonly reported musculoskeletal overuse injury in active individuals, such as athletes, and is a multifactorial problem with no definite cause identified to date. Some studies have shown a relationship between impaired core and trunk sensorimotor control and knee disorders, especially PFP. The aim of this study was to evaluate trunk flexion proprioception by comparing the repositioning error between healthy athletes and athletes with PFP. Design: Cross-sectional case–control study. Setting: Rehabilitation sciences research center. Participants: Twenty healthy athletes and 20 athletes with PFP. Main Outcome Measures: To examine proprioception of trunk flexors, the absolute active and passive repositioning error at 30° and 60° trunk flexion were evaluated with isokinetic dynamometry. The results were compared between the two groups. Results: In the PFP group, the active trunk repositioning error at 30° flexion was significantly greater than in the healthy individuals (P < .001). The mean absolute active repositioning error at 30° flexion was 3.04° (1.37°) in the PFP group and 1.50° (0.70°) in the control group. There was no significant difference between groups in the active trunk repositioning error at 60° flexion (P = .066). The mean absolute active repositioning error at 60° flexion was 2.96° (1.26°) in the PFP group and 2.18° (0.99°) in the control group. The passive trunk repositioning error at 30° and 60° flexion was significantly greater in the PFP group (P = .013 and P = .004, respectively). The mean absolute passive repositioning error at 30° and 60° flexion in the PFP group was 2.94° (0.80°) and 3.13° (1.19°), respectively, and was 2.08° (1.08°) and 1.96° (0.71°), respectively, in the control group. The calculated eta-squared value showed that joint repositioning errors had large effect sizes (0.15–0.32). Conclusion: Trunk proprioception in the flexion direction may be impaired in patients with PFP. This finding suggests that trunk proprioception training may be important in rehabilitation for athletes with PFP.

Restricted access

Robert J. Reyburn and Cameron J. Powden

Context: Ankle braces have been theorized to augment dynamic balance. Objectives: To complete a systematic review with meta-analysis of the available literature assessing the effect of ankle braces on dynamic balance in individuals with and without chronic ankle instability (CAI). Evidence Acquisition: Electronic databases (PubMed, MEDLINE, CINAHL, and SPORTDiscus) were searched from inception to October 2019 using combinations of keywords related to dynamic balance, ankle braces, Star Excursion Balance Test (SEBT), Y-Balance Test (YBT), and Time to Stabilization. Inclusion criteria required that studies examined the effects of ankle braces on dynamic balance. Studies were excluded if they evaluated other conditions besides CAI, did not access dynamic balance, or did not use an ankle brace. Methodological quality was assessed using the Physiotherapy Evidence Database scale. The level of evidence was assessed using the Strength of Recommendation Taxonomy. The magnitude of brace effects on dynamic balance was examined using Hedges g effect sizes (ESs) and 95% confidence intervals (CIs). Random-effects meta-analysis was performed to synthesize SEBT/YBT and Time to Stabilization data separately. Data Synthesis: Seven studies were included with a median Physiotherapy Evidence Database score of 60% (range 50%–60%), and 4 were classified as high quality. Overall meta-analysis indicated a weak to no effect of braces on SEBT/YBT (ES = 0.117; 95% CI, −0.080 to 0.433; P = .177) and Time to Stabilization (ES = −0.064; 95% CI, −0.211 to 0.083, P = .083). Subanalysis of SEBT/YBT measures indicated a weak negative effect in healthy participants (ES = −0.116; 95% CI, −0.209 to −0.022, P = .015) and a strong positive effect in individuals with CAI (ES = 0.777; 95% CI, 0.418 to 1.136; P < .001). Conclusion: The current literature supports a strong effect of ankle braces on the SEBT/YBT in those with CAI. However, little to no dynamic balance changes were noted in healthy participants. Future research should include consistent ankle brace types, pathologic populations, and the examination of dynamic balance changes contribution to injury risk reduction.

Restricted access

Diulian Muniz Medeiros, César Marchiori and Bruno Manfredini Baroni

Context: Nordic hamstring exercise (NHE) has been widely employed to prevent hamstring strain injuries. However, it is still not clear which adaptations are responsible for the NHE preventive effects. Objectives: The aim of this study was to investigate the effects of NHE on knee flexors eccentric strength and fascicle length. Evidence Acquisition: The search strategy included MEDLINE, PEDro, and Cochrane CENTRAL from inception to April 2020. Randomized clinical trials that have analyzed the effects of NHE training on hamstring eccentric strength and/or fascicle length were included. Evidence Synthesis: From the 1932 studies identified, 12 were included in the systematic review, and 9 studies presented suitable data for the meta-analysis. All studies demonstrated strength increments in response to NHE training (10%–15% and 16%–26% in tests performed on the isokinetic dynamometer and on the NHE device, respectively), as well as significant enhancement of biceps femoris long head fascicle length (12%–22%). Meta-analysis showed NHE training was effective to increase knee flexors eccentric strength assessed with both isokinetic tests (0.68; 95% confidence interval, 0.29 to 1.06) and NHE tests (1.11; 95% confidence interval, 0.62 to 1.61). NHE training was also effective to increase fascicle length (0.97; 95% confidence interval, 0.46 to 1.48). Conclusions: NHE training has the potential of increasing both knee flexors eccentric strength and biceps femoris long head fascicle length.