Browse

You are looking at 31 - 40 of 1,867 items for :

  • Journal of Applied Biomechanics x
  • Refine by Access: All Content x
Clear All
Restricted access

Shoulder External Over Internal Rotation Ratio Is Related to Biomechanics in Collegiate Baseball Pitching

Hannah L. Stokes, Koco Eaton, and Naiquan Zheng

Altering baseball pitching mechanics affects both performance and the risk of injury. The purpose of this study is to investigate the relationships of shoulder external over internal rotation ratio (SEIR) and other shoulder rotational properties during physical exam and biomechanics of pitching for 177 collegiate baseball pitchers. The shoulder range of motion was quantitatively measured using a custom-made wireless device. Pitching motion data were collected at 240 Hz, and a custom program was created to calculate the throwing arm motion and loading during baseball pitching. Linear regression and analysis of variance tests were performed to investigate the relationships between the shoulder physical exam outcomes and throwing arm biomechanics. SEIR had significant correlations with shoulder horizontal adduction angle at foot contact, maximum shoulder external rotation angle, maximum shoulder linear velocity, and elbow angle at ball release. SEIR groups had significant differences in shoulder proximal force, adduction torque, internal rotation torque, and horizontal adduction torque, and in elbow medial force and varus torque. Glenohumeral internal rotation deficit and total rotational motion deficit had no relationships with throwing arm motions or joint loadings. Shoulder health should be monitored to improve understanding of pitching mechanics in collegiate baseball pitchers.

Restricted access

Plantar Flexor Muscle Activity and Fascicle Behavior in Gastrocnemius Medialis During Running in Highly Cushioned Shoes With Carbon-Fiber Plates

Keiichiro Hata, Yuta Hamamura, Hiroaki Noro, Yohei Yamazaki, Shunsuke Nagato, Kazuyuki Kanosue, and Toshio Yanagiya

The purposes of this study were to clarify the electromyography (EMG) of plantar flexors and to analyze the fascicle and tendon behaviors of the gastrocnemius medialis (GM) during running in the carbon-fiber plate embedded in thicker midsole racing shoes, such as the Nike ZoomX Vaporfly (VF) and traditional racing shoes (TRAD). We compared the fascicle and series elastic element behavior of the GM and EMG of the lower limb muscles during running (14 km/h, 45 s) in athletes wearing VF or TRAD. GM EMGs in the push-off phase were approximately 50% lower in athletes wearing VF than in TRAD. Although the series elastic element behavior and/or mean fascicle-shortening velocity during the entire stance phase were not significantly different between VF and TRAD, a significant difference was found in both the mean EMG and integral EMG of the GM during the push-off phase. EMG of the gastrocnemius lateralis (GL) during the first half of the push-off phase was significantly different between VF and TRAD. Present results suggest that VF facilitates running propulsion, resulting in a decrease in GM and GL EMGs at a given running velocity during the push-off phase, leading to a reduction in metabolic cost.

Restricted access

Volume 40 (2024): Issue 1 (Feb 2024)

Restricted access

Comparison of Concurrent and Asynchronous Running Kinematics and Kinetics From Marker-Based and Markerless Motion Capture Under Varying Clothing Conditions

Robert M. Kanko, Jereme B. Outerleys, Elise K. Laende, W. Scott Selbie, and Kevin J. Deluzio

As markerless motion capture is increasingly used to measure 3-dimensional human pose, it is important to understand how markerless results can be interpreted alongside historical marker-based data and how they are impacted by clothing. We compared concurrent running kinematics and kinetics between marker-based and markerless motion capture, and between 2 markerless clothing conditions. Thirty adults ran on an instrumented treadmill wearing motion capture clothing while concurrent marker-based and markerless data were recorded, and ran a second time wearing athletic clothing (shorts and t-shirt) while markerless data were recorded. Differences calculated between the concurrent signals from both systems, and also between each participant’s mean signals from both asynchronous clothing conditions were summarized across all participants using root mean square differences. Most kinematic and kinetic signals were visually consistent between systems and markerless clothing conditions. Between systems, joint center positions differed by 3 cm or less, sagittal plane joint angles differed by 5° or less, and frontal and transverse plane angles differed by 5° to 10°. Joint moments differed by 0.3 N·m/kg or less between systems. Differences were sensitive to segment coordinate system definitions, highlighting the effects of these definitions when comparing against historical data or other motion capture modalities.

Restricted access

Unrestrained Versus Vertically Restrained Loaded Countermovement Jumps: Are There Any Differences in the Components of Force Application?

Marcos Gutiérrez-Dávila, Daniel Marcos-Frutos, Carmen Gutiérrez-Cruz, and Amador García-Ramos

The objective of this study was to compare a number of variables derived from the vertical and horizontal force components between loaded countermovement jumps performed in a Smith machine (SM modality; vertically restrained jumps) and with free weights (FW modality; unrestrained jumps). Twenty-three recreationally trained individuals, 6 women and 17 men, performed on a 3D force platform 5 maximal countermovement jump trials against 3 external loads (30%, 50%, and 70% of the SM 1-repetition maximum) using the SM and FW jumping modalities on separate sessions. The SM modality promoted greater values for virtually all the variables derived from the vertical force component (maximal force, maximal and minimum velocity, and impulse) and also shorter durations of the braking and propulsive phases. Regardless of the countermovement jump phase (braking or propulsive), the impulse directed toward the backward direction was always considerably greater for the SM compared with the FW modality. These results evidence that for recreationally trained individuals, the SM modality could be more effective to increase the general force capacity of the leg muscles due to increased external stability, while the FW modality is preferable when the orientation of force application is a crucial consideration, as it reduces the horizontal force component.

Restricted access

Alternative Models for Pelvic Marker Occlusion in Cycling

Alberto Galindo-Martínez, Juan Miguel Vallés-González, Alejandro López-Valenciano, and Jose L.L. Elvira

Bike fitting aims to optimize riders’ positions to improve their performance and reduce the risk of injury. To calculate joint angles, the location of the joint centers of the lower limbs needs to be identified. However, one of the greatest difficulties is the location of the hip joint center due to the frequent occlusion of the anterior superior iliac spine markers. Therefore, the objective of this study was to validate a biomechanical model adapted to cycling (modified pelvic model, MPM), based on the traditional pelvic model (TPM) with an additional lateral technical marker placed on the iliac crests. MPM was also compared with a widely used model in cycling, trochanter model (TM). Thirty-one recreational cyclists pedaled on a roller bike while the movement was captured with a 7-camera VICON system. The position of the hip joint center and knee angle were calculated and compared with the TPM continuously (along 10 pedaling cycles) and discreetly at 90° and 180° crank positions. No significant differences were found in the position of the hip joint center or in the knee flexion/extension angle between the TPM and the MPM. However, there are differences between TPM and TM (variations between 4.1° and 6.9° in favor of the TM at 90° and 180°; P < .001). Bland–Altman graphs comparing the models show an average difference or bias close to 0° (limits of agreement [0.2 to −8.5]) between TPM and MPM in both lower limbs and a mean difference of between −4° and −7° (limits of agreement [−0.6 to −13.2]) when comparing TPM and TM. Given the results, the new cycling pelvic model has proven to be valid compared with the TPM when performing bike fitting studies, with the advantage that the occluded markers are avoided. Despite its simplicity, the TM presents measurement errors that may be relevant when making diagnoses, which makes its usefulness questionable.

Restricted access

Dose–Response Effect of an Inertia Flywheel Postactivation Performance Enhancement Protocol on Countermovement Jump Performance

Keegan B. Hall, Maarten A. Immink, David T. Martin, Hunter Bennett, and Robert G. Crowther

The purpose of this study was to investigate the dose–response effect of a high-load, 6-repetition, maximum effort inertial flywheel (IFw) squat postactivation performance enhancement (PAPE) protocol on countermovement jump (CMJ) performance metrics. Thirteen subjects completed 5 squat testing sessions: 1 session to determine back-squat 6-repetition maximum, 1 session to determine 6-repetition maximum IFw load, and 3 sessions to investigate the dose–response effect of an IFw PAPE protocol set at the load determined in the second session. In the IFw PAPE sessions, subjects completed either 1, 2, or 3 sets of IFw squats, then performed 5 CMJs over 12 minutes (1, 3, 6, 9, and 12 min post-IFw). All CMJ tests were conducted on a force platform where CMJ performance outcomes and impulse variables were calculated. There was no main time or volume effect for jump height, contact time, reactive strength index, peak force, or any of the impulse variables. A main time effect was identified for flight time (P = .006, effect size = 0.24) and peak power (P = .001, effect size = 0.28). The lack of change in jump height may indicate that too much fatigue was generated following this near-maximal IFw squat protocol, thereby reducing the PAPE effect.

Restricted access

Lower-Extremity Energetic Distribution During Rate-Controlled Ballet Jumps (Sautés) in Healthy Dancers

Amanda C. Yamaguchi, Lindsey H. Trejo, Hai-Jung Steffi Shih, David Ortiz-Weissberg, and Kornelia Kulig

Dancers frequently perform jumps in the context of a prolonged, continuous dance piece. The purpose of this study is to explore the lower-extremity energetics in healthy dancers performing repetitive dance jumps (sautés) before and after typical dance-specific choreography. Lower-extremity kinetic data were collected from 14 healthy female dancers during a series of sautés performed before and after 3 minutes of dance. Percent contributions of the lower-extremity joints to the whole-limb mechanical energy expenditure during ground contact were calculated. The jumps performed at the beginning were compared with the jumps at the end of the dance choreography. Dancers maintained the jump rate and consistent whole-limb mechanical energy expenditure between the jump series. As expected, for both jump series, the sautés had greater relative energetic contribution from the ankle and knee as compared with lesser contribution from the hip and toe. However, we observed lesser contribution from the knee and greater contribution from the hip after a 3-minute dance. After performing typical dance choreography, the dancers demonstrated a distal to proximal redistribution of individual joints’ contribution to whole-limb mechanical energy expenditure.

Restricted access

Impaired Neuromotor Control During Gait in Concussed Adolescents—A Frequency Analysis

Divya Jain, Valentina Graci, Megan E. Beam, Christina L. Master, Laura A. Prosser, Catherine C. McDonald, and Kristy B. Arbogast

Disruptions in gait function are common after concussion in adolescents; however, the neuromotor control deficits driving these gait disruptions are not well known. Fifteen concussed (age mean [SD]): 17.4 [0.6], 13 females, days since injury: 26.3 [9.9]) and 17 uninjured (age: 18.0 [0.7], 10 females) adolescents completed 3 trials each of single-task gait and dual-task gait (DT). During DT, participants simultaneously walked while completing a serial subtraction task. Gait metrics and variability in instantaneous mean frequency in lower extremity muscles were captured by inertial sensors and surface electromyography, respectively. A 2-way analysis of covariance was used to compare gait metrics across groups and conditions. Functional principal components analysis was used to identify regions of variability in instantaneous mean frequency curves. Functional principal component scores were compared across groups using a Welch statistic. Both groups displayed worse performance on gait metrics during DT condition compared to single-task, with no differences between groups (P < .001). Concussed adolescents displayed significantly greater instantaneous mean frequency, indicated by functional principal component 1, in the tibialis anterior, biceps femoris, and semitendinosus (P < .05) during single-task and DT compared with uninjured adolescents. Our observations suggest that concussed adolescents display inefficient motor unit recruitment lasting longer than 2 weeks following injury, regardless of the addition of a secondary task.

Restricted access

Volume 39 (2023): Issue 6 (Dec 2023)