Browse

You are looking at 31 - 40 of 908 items for :

  • Motor Control x
  • Refine by Access: All Content x
Clear All
Restricted access

Volume 27 (2023): Issue 3 (Jul 2023)

Restricted access

The Association of Age and Sex With Joint Angles and Coordination During Unanticipated Cutting in Soccer Players

Shawn M. Robbins, Yuri Lopes Lima, Harry Brown, Moreno Morelli, David J. Pearsall, Marco Bühler, and Anouk Lamontagne

Deficits in movement patterns during cutting while running might place soccer players at risk of injury. The objective was to compare joint angles and intersegment coordination between sexes and ages during an unanticipated side-step cutting task in soccer players. This cross-sectional study recruited 11 male (four adolescents and seven adults) and 10 female (six adolescents and four adults) soccer players. Three-dimensional motion capture was used to measure lower-extremity joint and segment angles as participants performed an unanticipated cutting task. Hierarchical linear models examined relationships between joint angle characteristics with age and sex. Continuous relative phase was used to quantify intersegment coordination amplitude and variability. These values were compared between age and sex groups using analysis of covariance. Adult males had greater hip flexion angle excursions than adolescent males, while adult females had smaller excursions than adolescent females (p = .011). Females had smaller changes in hip flexion angles (p = .045), greater hip adduction angles (p = .043), and greater ankle eversion angles (p = .009) than males. Adolescents had greater hip internal rotation (p = .044) and knee flexion (p = .033) angles than adults, but smaller changes in knee flexion angles at precontact compared with stance/foot off (p < .001). For intersegment coordination, females were more out-of-phase than males in the foot/shank segment in the sagittal plane. There were no differences in intersegment coordination variability between groups. Differences in joint motion during an unanticipated cutting task were present between age groups and sexes. Injury prevention programs or training programs may be able target specific deficits to lower injury risk and improve performance.

Free access

Identifying Referent Control Variables Underlying Goal-Directed Arm Movements

Marie-Reine El-Hage, Alexandra Wendling, Mindy F. Levin, and Anatol G. Feldman

The referent control theory (RCT) for action and perception is an advanced formulation of the equilibrium-point hypothesis. The RCT suggests that rather than directly specifying the desired motor outcome, the nervous system controls action and perception indirectly by setting the values of parameters of physical and physiological laws. This is done independently of values of kinematic and kinetic variables including electromyographic patterns describing the motor outcome. One such parameter—the threshold muscle length, λ, at which motoneurons of a given muscle begin to be recruited, has been identified experimentally. In RCT, a similar parameter, the referent arm position, R, has been defined for multiple arm muscles as the threshold arm position at which arm muscles can be quiescent but activated depending on the deflection of the actual arm position, Q, from R. Changes in R result in reciprocal changes in the activity of opposing muscle groups. We advanced the explanatory power of RCT by combining the usual biomechanical descriptions of motor actions with the identification of the timing of R underlying arm movements made with reversals in three directions and to three different extents. We found that in all movements, periods of minimization of the activity of multiple muscles could be identified at ∼61%–86% of the reaching extent in each direction. These electromyographic minimization periods reflect the spatial coordinates at which the R and Q overlap during the production of movements with reversals. The findings support the concept of the production of arm movement by shifting R.

Restricted access

Effects of Wearing Slippers While Obstacle Crossing in Healthy Young Adults: Strategy for Toe Clearance Enhancement and Prevention of Slipper Loss

Kento Tanaka, Yusuke Sekiguchi, Keita Honda, and Shin-ichi Izumi

Wearing loose footwear, such as slippers, poses a risk factor for tripping. Previous studies have examined obstacle crossing to find strategies to avoid tripping. However, the effect of wearing slippers on the likelihood of tripping remains unclear. Therefore, this study aimed to determine whether wearing slippers while level walking and obstacle crossing affects kinematic characteristics and muscle activity. Sixteen healthy, young adults performed two tasks (a) while wearing slippers and (b) while barefoot: (1) level walking and (2) crossing a 10-cm obstacle. Toe clearance, joint angles, muscle activity, and cocontraction were measured for both the leading and trailing lower limbs. In the slipper-wearing condition, knee flexion and hip flexion angles were significantly increased in the swing phase for the leading limb (p < .001 and p < .001, respectively) and trailing limb (p < .001 and p = .004, respectively) compared with the barefoot condition. Tibialis anterior activity (p = .01) and muscle cocontraction of the tibialis anterior and the medial head of the gastrocnemius (p = .047) were significantly increased in the swing phase of the trailing limb for the slipper-wearing condition compared with the barefoot condition in the obstacle crossing task. Wearing slippers increased knee and hip flexion angles, and muscle cocontraction of the tibialis anterior and medial head of gastrocnemius increased during obstacle crossing. The results revealed that obstacle crossing while wearing slippers would require foot fixation adjustment in addition to increased knee and hip flexion to avoid toe collision.

Restricted access

Stimulus–Response Compatibility During Fighting Task Simulation: Influences of the Opponent’s Spatial Codes on the Accuracy and Response Time

Andreza Abreus de Moura, Leonardo José Mataruna-Dos-Santos, and Erick Francisco Quintas Conde

Manual Reaction Time measures have been widely used to study interactions between perceptual, cognitive, and motor functions. The Stimulus–Response Compatibility is a phenomenon characterized through faster Manual Reaction Times when stimuli and response locations coincide (correspondent condition) than when they are on different sides (noncorrespondent condition). The present study adapted a protocol to study if the Stimulus–Response Compatibility effect can be detected during a virtual combat simulation. Twenty-seven participants were instructed to defend themselves by clicking a key in order to block the presented punch. Videos of two fighters were used, granting two types of basic strokes: the back fist, a punch performed with the dorsal part of the fighter’s hand, starting at the opposite side to which it is directed; and the hook punch, performed with a clenched fist starting and finishing ipsilaterally. The Manual Reaction Times were different between the correspondent and noncorrespondent conditions, F(1, 26) = 9.925; p < .004; η2 = .276, with an Stimulus–Response Compatibility effect of 72 ms. Errors were also different, F(1, 26) = 23.199; p < .001; η2 = .472, between the correspondent (13%) and the noncorrespondent conditions (23%). The study concluded that spatial codes presented at the beginning of the punch movement perception substantially influenced the response execution.

Restricted access

Understanding the Interaction of Transcranial Direct Current Stimulation and Visual Feedback During an Ankle Movement Task

Mark Cummings, Aditi Doshi, and Sangeetha Madhavan

Background: Transcranial direct current stimulation (tDCS) has been demonstrated to facilitate motor performance in healthy individuals; however, results are variable. The neuromodulatory effects of tDCS during visuomotor tasks may be influenced by extrinsic visual feedback. However, this interaction between tDCS and visual feedback has not been explored for the lower limb. Hence, our objective was to explore if tDCS over the primary lower limb motor cortex differentially facilitates motor performance based on the availability of visual feedback. Methods: Twenty-two neurotypical adults performed ankle plantarflexion and dorsiflexion movements while tracking a sinusoidal target. Spatiotemporal, spatial, and temporal error were calculated between the ankle position and target. Participants attended two sessions, a week apart, with (Stim) and without (No-Stim) anodal tDCS. Sessions were divided into two blocks containing randomized visual feedback conditions: full, no, and blindfold. During Stim sessions, the first block included the application of tDCS to the lower limb M1. Results: Spatiotemporal and spatial error increased as feedback faded (p < .001). A two-way repeated-measures analysis of variance showed a significant interaction between tDCS and visual feedback (p < .05) on spatiotemporal error. Post hoc analyses revealed a significant improvement in spatiotemporal error when visual feedback was absent (p < .01). Spatial and temporal errors were not significantly affected by stimulation or visual feedback. Discussion: Our results suggest that tDCS enhances spatiotemporal ankle motor performance only when visual feedback is not available. These findings indicate that visual feedback may play an important role in demonstrating the effectiveness of tDCS.

Restricted access

Effectiveness of a Cognitive-Motor Training Program in Reducing Attentional Cost During Walking in Patients With Multiple Sclerosis

Carmen Gutiérrez-Cruz, F. Javier Rojas, Juan Carlos De la Cruz, and Marcos Gutiérrez-Dávila

The purpose of this study was to assess the efficacy of a combined training program (CTP) in reducing the effects of dual tasking on the temporal parameters and kinematics of gait, as compared with single-task gait. A controlled, randomized, intervention study was performed in an intervention group and a control group. The intervention group attended three weekly CTP sessions for 24 weeks. Gait pattern was evaluated prior to the baseline intervention, at 12 weeks, and at 24 weeks (Repost). The sample was composed of 22 subjects diagnosed with multiple sclerosis with an Expanded Disability Status Scale score of 0–5.5. A total of 12 patients were allocated to the intervention group and another 10 to the control group. A three-dimensional photogrammetry scanner was connected to a selective attention system designed to present a dual-task gait condition. Dual tasking had an impact on all spatiotemporal parameters of gait, and the most remarkable effect of dual tasking was on double-support time, which increased by 9% with respect to normal walking. In contrast, dual tasking had a trivial effect on single-support time. The CTP was effective in reducing the effects of dual tasking on stride length and velocity of the center of mass after Repost of training (p < .05). The CTP reduced time in double-support phase, whereas single-support time increased after Repost of intervention. The application of the CTP had no effect on the cost of the double task after 12 weeks of intervention. It is suggested to increase the application time over Repost.

Restricted access

Creativity Is Contextual: A Narrative Review of Motor Creativity Tests From an Ecological Perspective

Yi-Shin Lee, Pierpaolo Iodice, and John Komar

This narrative review seeks to compare the various ways in which motor creativity has been measured and to critically evaluate those methods within the context of our contemporary understanding of motor creativity. Eligible studies included those of any study design, experimental or observational, as long as motor creativity was measured. Three databases (i.e., PubMed, Scopus, and ScienceDirect) were searched from the earliest possible start dates to December 2021. No risk of bias assessment was performed as the study outcomes were not the focus of the review. After screening for eligibility, 23 articles were included for review, all having measured motor creativity. Of the 23 articles, 16 measured generic motor creativity, while the remaining seven measured task-specific motor creativity. Furthermore, 16 of the studies tested motor creativity with largely static environmental constraints, while the remaining seven were conducted with dynamic environmental constraints. Using a contemporary understanding of motor creativity, most motor creativity tests presently do not possess sufficient task specificity and environmental dynamism, which may not provide an appropriate context for the emergence of creative motor action.

Restricted access

Effects of 4 Weeks of Variability Training on Forehand Approach Precision and Velocity in Recreational Tennis Players

Celia Negro, Ernest Baiget, Joshua Colomar, and Juan Pedro Fuentes-García

This study aims to analyze the effects of a training program based on practice variability on the speed and accuracy of the tennis forehand approach to the net shot. The study sample consisted of 35 players of both genders, 22 men and 13 women (age 44 ± 10.9 years, height 1.73 ± 0.8 cm, and weight 74.7 ± 8.4 kg). Players were randomly distributed into two groups (control group = 18 and experimental group = 17). Both training groups worked a total volume of 4 weeks, seven sessions, and 15 min per session of forehand approach shot. Control group performed traditional training while experimental group trained with variability using wristband weights. The data obtained showed a large Group × Time interaction in the accuracy of the forehand approach shot, F(1, 16) = 28.034, p < .001, η2 = .637. Only the experimental group increased significantly in the accuracy after the program (51.4%, effect size = 1.3, p < .001), while no changes were achieved regarding hitting speed (1.2%, effect size  = 0.12, p = .62). The control group did not improve in any of the tested variables. These results indicate that variability of training using wrist weights is a valid option to improve forehand approach shot accuracy in recreational-level players. Although stroke speed was not increased, this type of training may be interesting as accuracy and technical control is commonly the main goal of training at this level.

Restricted access

Effects of Mental Fatigue Induced by Stroop Task and by Social Media Use on Resistance Training Performance, Movement Velocity, Perceived Exertion, and Repetitions in Reserve: A Randomized and Double-Blind Crossover Trial

Carlos Alix-Fages, Henar González-Cano, Eneko Baz-Valle, and Carlos Balsalobre-Fernández

This study aimed to explore the effects of mental fatigue (MF) induced by an incongruent Stroop task (ST) and by using social media (SM) compared to watching a documentary (control) on dynamic resistance training. Twenty-one resistance-trained males attended three identical experimental sessions with the only difference of the randomized cognitive task (ST, SM, or control). Each session consisted of (a) baseline MF and motivation visual analogue scale responses, (b) cognitive task, (c) postvisual analogue scale responses, (d) warm-up, and (e) resistance training based on three sets of bench press at 65% of one-repetition maximum till concentric failure. Number of repetitions, ratings of perceived exertion, mean velocity of repetitions, and three repetitions in reserve estimated by subjects were recorded for each set. Both ST (p < .001) and SM (p = .010) effectively induced MF, but only ST impaired the number of repetitions performed in Set 2 (p = .036) and generated higher-than-normal levels of ratings of perceived exertion even reaching significant differences compared to SM in Set 1 (p = .005). However, SM also affected neuromuscular performance by impairing movement velocity in Set 1 (p = .003). The ability of estimating three repetitions in reserve or motivation was not affected by any condition (p range = .362–.979). MF induced by ST impaired the number of repetitions performed, what seems to be mediated by higher-than-normal levels of ratings of perceived exertion. Besides, SM also impaired the ability to apply force against 65% of one-repetition maximum measured by movement velocity.