Browse

You are looking at 31 - 40 of 5,521 items for :

  • Physical Education and Coaching x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

Jacqueline Martins Patatas, Jens De Rycke, Veerle De Bosscher, and Rafael Lima Kons

The literature suggests that the current athlete development models do not reflect the multifaceted developmental pathways in Paralympic sport. This study aimed to analyze how parasport athletes progress through developmental phases of an athletic career pathway by comparing differences in their trajectories based on the nature of the impairment (acquired or congenital), age, and sex. A total of 345 para-athletes representing 15 sports completed an online survey. Results showed that the developmental phases for athletes with acquired impairment are of shorter duration, taking 4.5 years to progress from the attraction to the elite phase, while athletes with congenital impairment take 6 years. Athletes with congenital impairment start in parasport approximately 8 years younger and win medals in international competitions 7 years earlier than athletes with acquired impairment. Insights gathered in this study have the potential to enhance further thinking toward the genesis of specific models of para-athlete development.

Restricted access

Colin Clancy, Nigel Gleeson, and Tom Mercer

Purpose: The purpose of this study was to assess neuromuscular performance capabilities over an in-season mesocycle in early-career professional soccer players and examine the relationship with training workload. Methods: Neuromuscular performance capabilities (isometric knee extensor: peak force, rate of force development, and peak twitch force) of 12 professional soccer players were assessed weekly over a 6-week period. Training and match workload were also recorded over the same period for each player (high-intensity running distance). Changes in neuromuscular performance and workload variables were analyzed. Results: There was evidence of fluctuations in neuromuscular performance capability over the mesocycle that reached statistical (P < .05) and practical (13.3% [peak-to-peak]) significance alongside interweek heterogeneity in training and match workload (∼17.5% [coefficient of variation], P < .05). Congruence among fluctuating patterns of intramesocycle training load and concomitant neuromuscular performance responses was noted over time for acute training load and acute:chronic workload ratio with peak force and rate of force development. Conclusion: Neuromuscular performance capabilities fluctuate over an in-season mesocycle and are influenced by high-intensity running workload, emphasizing the need for acute monitoring in elite soccer players.

Restricted access

Noah M.A. d’Unienville, Maximillian J. Nelson, Clint R. Bellenger, Henry T. Blake, and Jonathan D. Buckley

Purpose: To prescribe training loads to improve performance, one must know how an athlete is responding to loading. The maximal rate of heart-rate increase (rHRI) during the transition from rest to exercise is linearly related to changes in endurance exercise performance and can be used to infer how athletes are responding to changes in training load. Relationships between rHRI and anaerobic exercise performance have not been evaluated. The objective of this study was to evaluate relationships between rHRI and anaerobic exercise performance. Methods: Eighteen recreational strength and power athletes (13 male and 5 female) were tested on a cycle ergometer for rHRI, 6-second peak power output, anaerobic capacity (30-s average power), and blood lactate concentration prior to (PRE), and 1 (POST1) and 3 (POST3) hours after fatiguing high-intensity interval cycling. Results: Compared with PRE, rHRI was slower at POST1 (effect size [ES] = −0.38, P = .045) but not POST3 (ES = −0.36, P = .11). PPO was not changed at POST1 (ES = −0.12, P = .19) but reduced at POST3 (ES = −0.52, P = .01). Anaerobic capacity was reduced at POST1 (ES = −1.24, P < .001) and POST3 (ES = −0.83, P < .001), and blood lactate concentration was increased at POST1 (ES = 1.73, P < .001) but not at POST3 (ES = 0.75, P = .11). rHRI was positively related to PPO (B = 0.19, P = .03) and anaerobic capacity (B = 0.14, P = .005) and inversely related to blood lactate concentration (B = −0.22, P = .04). Conclusions: rHRI is linearly related to acute changes in anaerobic exercise performance and may indicate how athletes are responding to training to guide the application of training loads.

Restricted access

Thomas W. Jones, Andrew D. Govus, Alfred Buskqvist, Erik P. Andersson, and Kerry McGawley

Purpose: To provide a descriptive analysis of the warm-up (WU) strategies employed by cross-country skiers prior to distance and sprint competitions at a national championship and to compare the skiers’ planned and executed WUs prior to the respective competitions. Methods: Twenty-one national- and international-level skiers (11 women and 10 men) submitted WU plans prior to the distance and sprint competitions, and after the competitions, reported any deviations from the plans. Skiers used personal monitors to record heart rate (HR) during WU, races, and cooldown. Quantitative statistical analyses were conducted on WU durations, durations in HR-derived intensity zones, and WU loads. Qualitative analyses were conducted on skiers’ WU plans and their reasons for deviating from the plans. Results: Skiers’ planned WUs were similar in content and planned time in HR-derived intensity zones for both the distance and sprint competitions. However, 45% of the women and 20% of the men reported that their WU was not carried out as planned, with reasons detailed as being due to incorrect intensities and running out of time. WU activities including skiing across variable terrain, muscle-potentiating exercises, and heat-maintenance strategies were missing from the skiers’ planned routines. Conclusions: Skiers favored a long, traditional WU approach for both the sprint and distance events, performing less high-intensity and more moderate-intensity exercise during their WUs than planned. In addition, elements likely relevant to successful performance in cross-country skiing were missing from WU plans.

Restricted access

Jerome Koral, Marie Fanget, Laurianne Imbert, Thibault Besson, Djahid Kennouche, Audrey Parent, Clément Foschia, Jérémy Rossi, and Guillaume Y. Millet

Purpose: Fatigue has previously been investigated in trail running by comparing maximal isometric force before and after the race. Isometric contractions may not entirely reflect fatigue-induced changes, and therefore dynamic evaluation is warranted. The aim of the present study was to compare the magnitude of the decrement of maximal isometric force versus maximal power, force, and velocity after trail running races ranging from 40 to 170 km. Methods: Nineteen trail runners completed races shorter than 60 km, and 21 runners completed races longer than 100 km. Isometric maximal voluntary contractions (IMVCs) of knee extensors and plantar flexors and maximal 7-second sprints on a cycle ergometer were performed before and after the event. Results: Maximal power output (P max; −14% [11%], P < .001), theoretical maximum force (F 0; −11% [14%], P < .001), and theoretical maximum velocity (−3% [8%], P = .037) decreased significantly after both races. All dynamic parameters but theoretical maximum velocity decreased more after races longer than 100 km than races shorter than 60 km (P < .05). Although the changes in IMVCs were significantly correlated (P < .05) with the changes in F 0 and P max, reductions in IMVCs for knee extensors (−29% [16%], P < .001) and plantar flexors (−26% [13%], P < .001) were larger (P < .001) than the reduction in P max and F 0. Conclusions: After a trail running race, reductions in isometric versus dynamic forces were correlated, yet they are not interchangeable because the losses in isometric force were 2 to 3 times greater than the reductions in P max and F 0. This study also shows that the effect of race distance on fatigue measured in isometric mode is true when measured in dynamic mode.

Restricted access

Rodrigo Zacca, Bruno Mezêncio, Flávio A. de Souza Castro, Fábio Y. Nakamura, David B. Pyne, João Paulo Vilas-Boas, and Ricardo J. Fernandes

Aim: The authors investigated how the Arena Powerskin R-EVO Closed Back swimsuit and Arena Carbon Triwetsuit (full-sleeve wetsuit), both approved by the Fédération Internationale de Natation (FINA) regulations, affect biomechanics and energetics of 3 elite female open water (OW) swimmers at maximal and 4 submaximal swimming intensities. Methods: Three elite female OW swimmers (OW1 = 24 y, 1.64 m, 60 kg; OW2 = 23 y, 1.69 m, 65 kg; OW3 = 27 y, 1.63 m, 64.5 kg) were tested 1 week prior to a FINA/CNSG (China National Sports Group) Marathon Swim World Series event and 40 days before the 18th FINA World Championships 2019. Each OW swimmer completed 2 identical testing sessions, one with a swimsuit and other with a wetsuit, involving shoulder flexion power output assessed from medicine-ball throw, maximal performance and drag coefficient assessment, and an incremental intermittent swim test at 4 different relative intensities. Results: Estimated peak oxygen uptake was 4.4 L·min−1 for OW1, 5.6 L·min−1 for OW2, and 5.0 L·min−1 for OW3. Despite a distinct behavior observed on index of coordination for OW3, a null index of synchronization, increased stroke rate (mean difference = 2%–8%), reduced drag factor (minimum = −14%; maximum = −30%), lower energy cost (mean difference = −2% to −6%), and faster performance (mean difference = 2% to 3%) were observed with the wetsuit compared with swimsuit for all elite OW swimmers. Conclusion: The wetsuit enhances submaximal swimming performance, and this increase is dependent on the OW swimmer’s characteristics. The higher stroke rate and lower stroke length detected with wetsuit could be related to movement constraints imposed by the suit.

Restricted access

Xabier Muriel, Pedro L. Valenzuela, Manuel Mateo-March, Jesús G. Pallarés, Alejandro Lucia, and David Barranco-Gil

Purpose: To compare the physical demands and performance indicators of male professional cyclists of 2 different categories (Union Cycliste Internationale WorldTour [WT] and ProTeam [PT]) during a cycling grand tour. Methods: A WT team (n = 8, 31.4 [5.4] y) and a PT team (n = 7, 26.9 [3.3] y) that completed “La Vuelta 2020” volunteered to participate. Participants’ power output (PO) was registered, and measures of physical demand and physiological performance (kilojoules spent, training stress score, time spent at different PO bands/zones, and mean maximal PO [MMP] for different exertion durations) were computed. Results: WT achieved a higher final individual position than PT (31 [interquartile range = 33] vs 71 [59], P = .004). WT cyclists showed higher mean PO and kilojoule values than their PT peers and spent more time at high-intensity PO values (>5.25 W·kg−1) and zones (91%–120% of individualized functional threshold power) (Ps < .05). Although no differences were found for MMP values in the overall analysis (P > .05), subanalyses revealed that the between-groups gap increased through the race, with WT cyclists reaching higher MMP values for ≥5-minute efforts in the second and third weeks (Ps < .05). Conclusions: Despite the multifactorial nature of cycling performance, WT cyclists spend more time at high intensities and show higher kilojoules and mean PO than their PT referents during a grand tour. Although the highest MMP values attained during the whole race might not differentiate between WT and PT cyclists, the former achieve higher MMP values as the race progresses.

Restricted access

Johnpaul Caia, Shona L. Halson, Patrick M. Holmberg, and Vincent G. Kelly

Purpose: To examine the sleep of rugby league athletes the night before and following an evening match and to investigate the association between caffeine intake and sleep on the night of competition. Methods: On the night prior to, night of, and night after a professional rugby league match, 15 athletes had their sleep monitored using wrist activity monitors. Additionally, saliva samples were collected 60 minutes before and 30 minutes after the competition to assess salivary caffeine concentration. Differences in sleep across the 3 nights were examined using linear mixed models, and changes were assessed using effect size (ES). Pearson correlation (r) assessed the relationship between salivary caffeine levels and sleep indices. Results: On the night of competition, athletes went to bed later than the night before (P = .00002, ES = 1.84) and night after (P = .0003, ES = 1.49) competition. Consequently, their sleep duration was reduced on the night of competition compared with the previous night (P < .0000003, ES = 2.36) and night after competition (P = .001, ES = 1.53). Postcompetition salivary caffeine concentration was substantially elevated in athletes when compared with precompetition measures (P < .00000001, ES = 4.44), and moderate, nonsignificant correlations were observed between changes in salivary caffeine concentration and delayed bedtime (r = .48, P = .07), increased sleep latency (r = .45, P = .09), decreased sleep duration (r = −.30, P = .28), and reduced sleep efficiency (r = −.34, P = .22). Conclusions: These results demonstrate that evening competition results in sleep disturbance in rugby league athletes, and caffeine supplementation prior to and during competition leads to substantial increases in postcompetition salivary caffeine concentration.

Restricted access

Alannah K.A. McKay, Rachel McCormick, Nicolin Tee, and Peter Peeling

This study determined the impact of heat stress on postexercise inflammation and hepcidin levels. Twelve moderately trained males completed three, 60-min treadmill running sessions under different conditions: (a) COOL, 18 °C with speed maintained at 80% maximum heart rate; (b) HOTHR, 35 °C with speed maintained at 80% maximum heart rate; and (c) HOTPACE, 35 °C completed at the average running speed from the COOL trial. Venous blood samples were collected pre-, post-, and 3-hr postexercise and analyzed for serum ferritin, interleukin-6 (IL-6), and hepcidin concentrations. Average HR was highest during HOTPACE compared with HOTHR and COOL (p < .001). Running speed was slowest in HOTHR compared with COOL and HOTPACE (p < .001). The postexercise increase in IL-6 was greatest during HOTPACE (295%; p = .003). No differences in the IL-6 response immediately postexercise between COOL (115%) and HOTHR (116%) were evident (p = .992). No differences in hepcidin concentrations between the three trials were evident at 3 hr postexercise (p = .407). Findings from this study suggest the IL-6 response to exercise is greatest in hot compared with cool conditions when the absolute running speed was matched. No differences in IL-6 between hot and cool conditions were evident when HR was matched, suggesting the increased physiological strain induced from training at higher intensities in hot environments, rather than the heat per se, is likely responsible for this elevated response. Environmental temperature had no impact on hepcidin levels, indicating that exercising in hot conditions is unlikely to further impact transient alterations in iron regulation, beyond that expected in temperate conditions.