Browse

You are looking at 41 - 50 of 1,825 items for :

  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: All Content x
Clear All
Restricted access

Volume 33 (2023): Issue 4 (Jul 2023)

Open access

Amino Acid-Based Beverage Interventions Ameliorate Exercise-Induced Gastrointestinal Syndrome in Response to Exertional-Heat Stress: The Heat Exertion Amino Acid Technology (HEAAT) Study

Ricardo J.S. Costa, Kayla Henningsen, Stephanie K. Gaskell, Rebekah Alcock, Alice Mika, Christopher Rauch, Samuel N. Cheuvront, Phil Blazy, and Robert Kenefick

The study aimed to determine the effects of two differing amino acid beverage interventions on biomarkers of intestinal epithelial integrity and systemic inflammation in response to an exertional-heat stress challenge. One week after the initial assessment, participants (n = 20) were randomly allocated to complete two exertional-heat stress trials, with at least 1 week washout. Trials included a water control trial (CON), and one of two possible amino acid beverage intervention trials (VS001 or VS006). On VS001 (4.5 g/L) and VS006 (6.4 g/L), participants were asked to consume two 237-ml prefabricated doses daily for 7 days before the exertional-heat stress, and one 237-ml dose immediately before, and every 20 min during 2-hr running at 60% maximal oxygen uptake in 35 °C ambient conditions. A water volume equivalent was provided on CON. Whole blood samples were collected pre-, immediately post-, 1 and 2 hr postexercise, and analyzed for plasma concentrations of cortisol, intestinal fatty acid protein, soluble CD14, and immunoglobulin M (IgM) by ELISA, and systemic inflammatory cytokines by multiplex. Preexercise resting biomarker concentrations for all variables did not significantly differ between trials (p > .05). A lower response magnitude for intestinal fatty acid protein (mean [95% CI]: 249 [60, 437] pg/ml, 900 [464, 1,336] pg/ml), soluble CD14 (−93 [−458, 272] ng/ml, 12 [−174, 197] ng/ml), and IgM (−6.5 [−23.0, 9.9] MMU/ml, −10.4 [−16.2, 4.7] MMU/ml) were observed on VS001 and V006 compared with CON (p < .05), respectively. Systemic inflammatory response profile was lower on VS001, but not VS006, versus CON (p < .05). Total gastrointestinal symptoms did not significantly differ between trials. Amino acid beverages’ consumption (i.e., 4.5–6.4 g/L), twice daily for 7 days, immediately before, and during exertional-heat stress ameliorated intestinal epithelial integrity and systemic inflammatory perturbations associated with exercising in the heat, but without exacerbating gastrointestinal symptoms.

Free access

Characterizing Hydration Practices in Healthy Young Recreationally Active Adults—Is There Utility in First Morning Urine Sampling?

Colleen X. Muñoz and Michael F. Bergeron

First morning urine (FMU) assessment would be a practical and convenient solution for clinically acceptable detection of underhydration prior to competition/training, and for the general public. Thus, we thus sought to determine the diagnostic accuracy of FMU as a valid indicator of recent (previous 24 hr, 5 days average) hydration practices. For 5 consecutive days and one final morning, 67 healthy women (n = 38) and men (n = 29; age: 20 [1] years, body mass index: 25.9 [5.5]) completed 24-hr diet logs for total water intake (from beverages and foods, absolute and relative to body mass), 24-hr urine and FMU collection (last morning only) for osmolality (Osm), specific gravity (SG), and color (Col), and morning blood sampling for plasma osmolality and copeptin. Correlations determined significance and relationship strength among FMU and all other variables. Area under the receiver operating characteristic curves, sensitivity, specificity, and positive likelihood ratios were employed using previously reported values to indicate underhydration (total water intake < 30 ml/kg, osmolality > 500, and >800 mOsm/kg, specific gravity > 1.017, and copeptin > 6.93 pmol/L). FMU_Osm and FMU_SG were significantly correlated (p < .05) to all variables except the previous 5-day plasma osmolality. FMU_Col was only significantly correlated with other color time intervals and total water intake per gram. FMU_Osm held greatest utility (area under the receiver operating characteristic curve, sensitivity, and specificity >80%) overall, with the best outcome being FMU_Osm indicating a previous 24-hr osmolality threshold of 500 mOsm/kg (FMU_Osm criterion >710 mOsm/kg and positive likelihood ratio = 5.9). With less effort and cost restriction, FMU is a viable metric to assess underhydration.

Free access

Co-Ingestion of Branched-Chain Amino Acids and Carbohydrate Stimulates Myofibrillar Protein Synthesis Following Resistance Exercise in Trained Young Men

Sarah R. Jackman, Gareth A. Wallis, Jinglei Yu, Andrew Philp, Keith Baar, Kevin D. Tipton, and Oliver C. Witard

Branched-chain amino acids (BCAA) and carbohydrate (CHO) are commonly recommended postexercise supplements. However, no study has examined the interaction of CHO and BCAA ingestion on myofibrillar protein synthesis (MyoPS) rates following exercise. We aimed to determine the response of MyoPS to the co-ingestion of BCAA and CHO following an acute bout of resistance exercise. Ten resistance-trained young men completed two trials in counterbalanced order, ingesting isocaloric drinks containing either 30.6-g CHO plus 5.6-g BCAA (B + C) or 34.7-g CHO alone following a bout of unilateral, leg resistance exercise. MyoPS was measured postexercise with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre- and 4 hr postdrink ingestion. Blood samples were collected at time points before and after drink ingestion. Serum insulin concentrations increased to a similar extent in both trials (p > .05), peaking at 30 min postdrink ingestion. Plasma leucine (514 ± 34 nmol/L), isoleucine (282 ± 23 nmol/L), and valine (687 ± 33 nmol/L) concentrations peaked at 0.5 hr postdrink in B + C and remained elevated for 3 hr during exercise recovery. MyoPS was ∼15% greater (95% confidence interval [−0.002, 0.028], p = .039, Cohen’s d = 0.63) in B + C (0.128%/hr ± 0.011%/hr) than CHO alone (0.115%/hr ± 0.011%/hr) over the 4 hr postexercise period. Co-ingestion of BCAA and CHO augments the acute response of MyoPS to resistance exercise in trained young males.

Restricted access

Female Athlete Representation and Dietary Control Methods Among Studies Assessing Chronic Carbohydrate Approaches to Support Training

Megan A. Kuikman, Alannah K.A. McKay, Ella S. Smith, Kathryn E. Ackerman, Rachel Harris, Kirsty J. Elliott-Sale, Trent Stellingwerff, and Louise M. Burke

The aim of this audit was to assess the representation of female athletes, dietary control methods, and gold standard female methodology that underpins the current guidelines for chronic carbohydrate (CHO) intake strategies for athlete daily training diets. Using a standardized audit, 281 studies were identified that examined high versus moderate CHO, periodized CHO availability, and/or low CHO, high fat diets. There were 3,735 total participants across these studies with only ∼16% of participants being women. Few studies utilized a design that specifically considered females, with only 16 studies (∼6%) including a female-only cohort and six studies (∼2%) with a sex-based comparison in their statistical procedure, in comparison to the 217 studies (∼77%) including a male-only cohort. Most studies (∼72%) did not provide sufficient information to define the menstrual status of participants, and of the 18 studies that did, optimal methodology for control of ovarian hormones was only noted in one study. While ∼40% of male-only studies provided all food and beverages to participants, only ∼20% of studies with a female-specific design used this approach for dietary control. Most studies did not implement strategies to ensure compliance to dietary interventions and/or control energy intake during dietary interventions. The literature that has contributed to the current guidelines for daily CHO intake is lacking in research that is specific to, or adequately addresses, the female athlete. Redressing this imbalance is of high priority to ensure that the female athlete receives evidence-based recommendations that consider her specific needs.

Restricted access

Protocol Standardization May Improve Precision Error of InBody 720 Body Composition Analysis

Tia Herberts, Gary J. Slater, Ava Farley, Luke Hogarth, Jose L. Areta, Gøran Paulsen, and Ina Garthe

Background: Bioelectrical impedance analysis (BIA) is a popular technique which can be used to track longitudinal changes in body composition. However, precision of the technique has been questioned, especially among athletic populations where small but meaningful changes are often observed. Guidelines exist which attempt to optimize precision of the technique but fail to account for potentially important variables. Standardization of dietary intake and physical activity in the 24 hr prior to assessment has been proposed as an approach to minimizing the error of impedance-derived estimates of body composition. Methods: Eighteen recreational athletes, male (n = 10) and female (n = 8), underwent two consecutive BIA tests to quantify within-day error, and a third test (the day before or after) to quantify between-day error. All food and fluid intake plus physical activity from the 24 hr prior to the first BIA scan was replicated during the following 24 hr. Precision error was calculated as the root mean square standard deviation, percentage coefficient of variation, and least significant change. Results: There were no significant differences in precision error of within- and between-day fat-free mass, fat mass, and total body water. Differences in precision error of fat-free mass and total body water, but not fat mass, were less than the smallest effect size of interest. Conclusion: The 24-hr standardization of dietary intake and physical activity may be an effective approach to minimizing precision error associated with BIA. However, further research to confirm the validity of this protocol compared to nonstandardized or randomized intake is warranted.

Restricted access

Volume 33 (2023): Issue 3 (May 2023)

Full access

Acute Ketone Monoester Supplementation Impairs 20-min Time-Trial Performance in Trained Cyclists: A Randomized, Crossover Trial

Devin G. McCarthy, Jack Bone, Matthew Fong, Phillippe J.M. Pinckaers, William Bostad, Douglas L. Richards, Luc J.C. van Loon, and Martin J. Gibala

Acute ketone monoester (KE) supplementation can alter exercise responses, but the performance effect is unclear. The limited and equivocal data to date are likely related to factors including the KE dose, test conditions, and caliber of athletes studied. We tested the hypothesis that mean power output during a 20-min cycling time trial (TT) would be different after KE ingestion compared to a placebo (PL). A sample size of 22 was estimated to provide 80% power to detect an effect size d z of 0.63 at an alpha level of .05 with a two-tailed paired t test. This determination considered 2.0% as the minimal important difference in performance. Twenty-three trained cyclists (N = 23; peak oxygen uptake: 65 ± 12 ml·kg−1 min−1; M ± SD), who were regularly cycling >5 hr/week, completed a familiarization trial followed by two experimental trials. Participants self-selected and replicated their diet and exercise for ∼24 hr before each trial. Participants ingested either 0.35 g/kg body mass of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate KE or a flavor-matched PL 30 min before exercise in a randomized, triple-blind, crossover manner. Exercise involved a 15-min warm-up followed by the 20-min TT on a cycle ergometer. The only feedback provided was time elapsed. Preexercise venous [β-hydroxybutyrate] was higher after KE versus PL (2.0 ± 0.6 vs. 0.2 ± 0.1 mM, p < .0001). Mean TT power output was 2.4% (0.6% to 4.1%; mean [95% confidence interval]) lower after KE versus PL (255 ± 54 vs. 261 ± 54 W, p < .01; d z  = 0.60). The mechanistic basis for the impaired TT performance after KE ingestion under the present study conditions remains to be determined.

Restricted access

Effects of Changes in Body Fat Mass as a Result of Regular Exercise on Hemoglobin A1c in Patients With Type 2 Diabetes Mellitus: A Meta-Analysis

Yutaka Igarashi, Nobuhiko Akazawa, and Seiji Maeda

An increase in visceral fat is associated with an increase in insulin resistance, so reducing body fat mass through exercise may help alleviate type 2 diabetes mellitus (T2DM). The current meta-analysis evaluated the effect of changes in body fat via an intervention of regular exercise on hemoglobin A1c (HbA1c) in patients with T2DM. The inclusion criteria were randomized controlled trials involving adults with T2DM, intervention involving exercise alone, an overall duration of intervention ≥12 weeks, and reporting HbA1c and body fat mass. The mean differences (MDs) were defined as the MD between the exercise group and the control group, and the MDs in HbA1c (in percentage) and body fat mass (in kilograms) were calculated. All MDs in HbA1c were pooled as overall effects. A meta-regression analysis was performed to evaluate the relationship between the MD in the body fat mass (in kilograms) and the MD in HbA1c. Twenty studies (1,134 subjects) were analyzed. The pooled MD in HbA1c (in percentage) decreased significantly (−0.4; 95% confidence interval [−0.5, −0.3]) but contained significant heterogeneity (Q = 52.7, p < .01; I 2 = 41.6%). A meta-regression analysis showed that a decrease in the MD in body fat mass was significantly associated with a decrease in the MD in HbA1c (R 2 = 80.0%) and heterogeneity decreased (Q = 27.3, p = .61; I 2 = 11.9%), and a reduction in body fat mass of 1 kg was estimated to decrease the HbA1c (%) by approximately 0.2. The current study suggested that a decrease in HbA1c due to regular exercise depends on a reduction in body fat mass in patients with T2DM.

Free access

How Skepticism (not Cynicism) Can Raise Scientific Standards and Reform the Health and Wellness Industry

Nicholas B. Tiller and Stuart M. Phillips