You are looking at 41 - 50 of 6,357 items for :

  • Physical Education and Coaching x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

The Influence of Blind Tennis on Subjective Inclusion Experiences—An Ableism-Critical Analysis

Felix Oldörp, Martin Giese, and Michelle Grenier

In this paper, we analyze the subjective inclusion experiences of visually impaired (VI) adult tennis players from an ableism-critical perspective. The primary focus of this research is the inclusive potential of blind tennis from the perspective of VI individuals. Episodic interviews were conducted to capture subjective perspectives. A qualitative text analysis revealed that the interviewees were confronted with multiple ability assumptions by sighted people in their everyday lives. Deficit notions on the performance of VI people included sports, work, and general activities. Participation in blind tennis helped the interviewees build a “competent identity” and acquire various skills useful for their everyday lives as participation in blind tennis was a pathway for competence in sports. Further research is needed to identify exclusion experiences from the perspective of disabled people to recognize the potential of different sports in reducing barriers to participation.

Restricted access

Volume 19 (2024): Issue 4 (Apr 2024)

Restricted access

The Influence of High-Intensity Work on the Record Power Profile of Under-23, Pro Team, and World Tour Cyclists

Peter Leo, Manuel Mateo-March, Andrea Giorgi, Xabier Muriel, Alejandro Javaloyes, David Barranco-Gil, Jesús G. Pallarés, Alejandro Lucia, Iñigo Mujika, and Pedro L. Valenzuela

Background: Durability (ie, the ability to attenuate the decline in performance after accumulated work) has been identified as a performance determinant in elite cyclists. The aim of the present study was to compare durability in elite cyclists of various performance levels, particularly after high-intensity work, referred to as “high-intensity durability.” Methods: Forty-nine (N = 49) male road cyclists were categorized as either under 23 years of age (U23) (N = 11), Pro Team (N = 13), or World Tour (N = 24). The participants’ critical power (CP) was assessed during the preseason. Thereafter, the participants’ maximum mean power (MMP) values were determined for efforts of different durations (from 5 s to 30 min) after different levels of accumulated work above CP (from 0 to 7.5 kJ·kg−1). Results: U23 cyclists showed a significant reduction of all relative MMP values for durations ≥1 minute after ≥5 kJ·kg−1 above CP compared with the “fresh” state (0 kJ·kg−1), whereas in Pro Team and World Tour cyclists, a significant reduction was not observed until 7.5 kJ·kg−1 above CP. In the “fresh” state, both Pro Team and particularly World Tour cyclists attained higher MMP values for efforts ≥10 minutes than U23 riders. However, more differences emerged with greater previous work levels, and indeed after 7.5 kJ·kg−1 above CP World Tour cyclists attained higher MMP values than both U23 and Pro Team cyclists for most efforts (≥30 s). Conclusion: Pro Team and particularly World Tour cyclists tolerate greater levels of accumulated work at high intensity, which might support the importance of high-intensity durability for performance.

Restricted access

Cadence Paradox in Cycling—Part 1: Maximal Lactate Steady State and Carbohydrate Utilization Dependent on Cycling Cadence

Ralph Beneke, Marisa Granseyer, and Renate M. Leithäuser

Purpose: To assess (1) whether and how a higher maximal lactate steady state (MLSS) at higher cycling cadence (RPM) comes along with higher absolute and/or fractional carbohydrate combustion (CHOMLSS), respectively, and (2) whether there is an interrelation between potential RPM-dependent MLSS effects and the maximally achievable RPM (RPMMAX). Methods: Twelve healthy males performed incremental load tests to determine peak power, peak oxygen uptake, and 30-minute MLSS tests at 50 and 100 per minute, respectively, to assess RPM-dependent MLSS, corresponding power output, CHOMLSS responses, and 6-second sprints to measure RPMMAX. Results: Peak power, peak carbon dioxide production, and power output at MLSS were lower (P = .000, ω2 = 0.922; P = .044, ω2 > 0.275; and P = .016, ω2 = 0.373) at 100 per minute than at 50 per minute. With 6.0 (1.5) versus 3.8 (1.2) mmol·L−1, MLSS was higher (P = .000, ω2 = 0.771) at 100 per minute than at 50 per minute. No corresponding RPM-dependent differences were found in oxygen uptake at MLSS, carbon dioxide production at MLSS, respiratory exchange ratio at MLSS, CHOMLSS, or fraction of oxygen uptake used for CHO at MLSS, respectively. There was no correlation between the RPM-dependent difference in MLSS and RPMMAX. Conclusions: The present study extends the previous finding of a consistently higher MLSS at higher RPM by indicating (1) that at fully established MLSS conditions, respiration and CHOMLSS management do not differ significantly between 100 per minute and 50 per minute, and (2) that linear correlation models did not identify linear interdependencies between RPM-dependent MLSS conditions and RPMMAX.

Free access

Erratum. Addressing Circadian Disruptions in Visually Impaired Paralympic Athletes

International Journal of Sports Physiology and Performance

Restricted access

Influence of Amputation on Kinetic Chain Musculature Activity During Basic and Modified Core Exercises

Kaiqi Liu, Linhong Ji, and Yijia Lu

Purpose: Core strength is vital for athletic performance, and many more exercises that involve the kinetic chain have been designed for able-bodied athletes. Disabilities that impair the kinetic chain can reduce the effectiveness of strength training. However, the impact of amputation on core strength training of people with disabilities and its underlying mechanism remains unclear. This study aimed to evaluate the muscle activation patterns and levels in athletes with amputation during 4 basic and modified weight-bearing core strength-training exercises. Methods: Fifteen elite athletes with unilateral amputation (170.6 [7.3] cm; 63.9 [11.9] kg; 25.9 [5.3] y) volunteered for this study. Surface electromyography was used to measure the muscle activity mainly in the lumbopelvic–hip complex-stabilizing muscles during 4 kinetic chain trunk exercises with and without modifications. Results: The significance level was set at α = .05. The results showed a significant difference in muscle activation between different body sides (P < .05). Specifically, amputation on the support position resulted in a diagonal pattern of muscle activation, and amputation on the free distal segments resulted in a unilateral dominant pattern with higher activation in muscles on the nonamputated side (P < .05). Modifications led to significant decreases in muscle activation asymmetry index (P < .05). Conclusions: Amputation caused muscle activation asymmetry and 2 activation patterns. Modifications by enhancing proximal stability and adjusting distal loading effectively reduced the asymmetry of muscle activation. Coaches and clinicians can use these results to tailor exercises for athletes with disabilities in training and rehabilitation.

Free access

Strategies to Involve End Users in Sport-Science Research

Christopher J. Stevens and Christian Swann

Restricted access

Investigating the Relevance of Maximal Speed and Acceleration in Varsity-Level Female Ice Hockey Players

Alexander S.D. Gamble, Kyle M.A. Thompson, Jessica L. Bigg, Christopher Pignanelli, Lawrence L. Spriet, and Jamie F. Burr

Purpose: To characterize and compare female ice hockey players’ peak skating speed and acceleration ability during linear sprints and gameplay. We also sought to quantify the time spent at various speeds and the frequency of accelerations at different thresholds during games. Methods: Seventeen varsity-level female ice hockey players (20 [1.4] y, 68.9 [4.9] kg, 167.6 [4.7] cm) participated in an on-ice practice session (performing 3 × 40-m linear sprints) and 4 regular-season games while being monitored using a local positioning system. Speed and acceleration were recorded from the sprint and within-game monitoring. Time on ice spent in relative skating speed zones and the frequency of accelerations at different intensities were recorded. Results: Players’ greatest peak speeds (29.5 [1.3] vs 28.3 [1.1] km/h) and accelerations (4.39 [0.48] vs 3.34 [0.36] m/s2) reached during gameplay were higher than those reached in linear sprinting (both P < .01). Peak in-game values were moderately predicted by linear sprint values for speed (r = .69, P < .01) but not for acceleration (r < .01, P = .95). Players spent little time at near-peak linear sprint speeds (≥80% [22.7 km/h], ∼3% time on ice; ≥90% [25.5 km/h], <1% of time on ice) during gameplay. However, 26% to 35% of accelerations recorded during the 4 games were ≥90% of linear sprint acceleration. Conclusions: Although skating speed may be advantageous in specific game situations, our results suggest that players spend little time at near-maximal speeds while accelerating frequently during games. This warrants further investigation of direction changes, skating transitions, repeated sprints, and other determinant variables potentially related to on-ice success and the implementation of training strategies to improve repeated acceleration or qualities beyond maximal skating speed.

Restricted access

Becoming a World Champion Powerlifter at 71 Years of Age: It Is Never Too Late to Start Exercising

Cas J. Fuchs, Jorn Trommelen, Michelle E.G. Weijzen, Joey S.J. Smeets, Janneau van Kranenburg, Lex B. Verdijk, and Luc J.C. van Loon

This case study assessed body composition, muscle strength, cardiorespiratory fitness, and metabolic health of the present female world champion powerlifter in the 70+ age category who started resistance exercise training at 63 years of age with no prior experience with structured exercise training. Measures of body composition (magnetic resonance imaging, computed tomography, and dual-energy X-ray absorptiometry scanning, leg volume); strength (one-repetition maximum leg press and extension, maximum voluntary contraction, and handgrip strength); physical function (short physical performance battery); cardiorespiratory fitness (peak oxygen consumption); and metabolic health (oral glucose tolerance test) were assessed. In addition, a muscle biopsy was collected to assess muscle fiber type distribution and cross-sectional area (CSA). Where possible, data were compared with previously (un)published sex- and age-matched data using z scores. Skeletal muscle mass index was calculated by dividing limb muscle mass by height squared. Data from the control groups are expressed as mean ± 95% confidence interval. Our participant (age: 71 years; body mass: 64.5 kg; body mass index: 27.6 kg/m2) reported a good bone mineral density of 1.09 g/cm2 (T score between −1 and +1) and very low values of abdominal and organ body fat (i.e., between 20% and 70% lower compared with a reference group of postmenopausal women). In addition, she showed a 33% greater skeletal muscle mass index when compared with healthy, older female control subjects (7.9 vs. 5.9 [5.7–6.2] kg/m2; n = 61) as well as 37% greater muscle quadriceps CSA (63.8 vs. 46.6 [44.5–48.7] cm2; n = 48) and 46% greater Type II muscle fiber CSA (4,536 vs. 3,097 [2,707–3,488] μm2; n = 19). Absolute leg press muscle strength was 36% greater (190 vs. 140 [132–147] kg; n = 30) and handgrip strength was 33% greater (33 vs. 25 [23–26] kg; n = 48) when compared with healthy, age-matched controls. In conclusion, even for resistance exercise naïve individuals, starting exercise at an advanced age can lead to improvements in body composition and muscle strength allowing older adults to reduce the risk for developing metabolic syndrome, live independently, and even compete at a world class level.

Free access

Caffeine, but Not Creatine, Improves Anaerobic Power Without Altering Anaerobic Capacity in Healthy Men During a Wingate Anaerobic Test

Alisson Henrique Marinho, Marcos David Silva-Cavalcante, Gislaine Cristina-Souza, Filipe Antonio de Barros Sousa, Thays Ataide-Silva, Romulo Bertuzzi, Gustavo Gomes de Araujo, and Adriano Eduardo Lima-Silva

There is a lack of evidence on the additional benefits of combining caffeine (CAF) and creatine (CRE) supplementation on anaerobic power and capacity. Thus, the aim of the present study was to test the effects of combined and isolated supplementation of CAF and CRE on anaerobic power and capacity. Twenty-four healthy men performed a baseline Wingate anaerobic test and were then allocated into a CRE (n = 12) or placebo (PLA; n = 12) group. The CRE group ingested 20 g/day of CRE for 8 days, while the PLA group ingested 20 g/day of maltodextrin for the same period. On the sixth and eighth days of the loading period, both groups performed a Wingate anaerobic test 1 hr after either CAF (5 mg/kg of body mass; CRE + CAF and PLA + CAF conditions) or PLA (5 mg/kg of body mass of cellulose; CRE + PLA and PLA + PLA conditions) ingestion. After the loading period, changes in body mass were greater (p < .05) in the CRE (+0.87 ± 0.23 kg) than in the PLA group (+0.13 ± 0.27 kg). In both groups, peak power was higher (p = .01) in the CAF (1,033.4 ± 209.3 W) than in the PLA trial (1,003.3 ± 204.4 W), but mean power was not different between PLA and CAF trials (p > .05). In conclusion, CAF, but not CRE ingestion, increases anaerobic power. Conversely, neither CRE nor CAF has an effect on anaerobic capacity.