Browse

You are looking at 41 - 50 of 1,871 items for :

  • Journal of Applied Biomechanics x
  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

Dose–Response Effect of an Inertia Flywheel Postactivation Performance Enhancement Protocol on Countermovement Jump Performance

Keegan B. Hall, Maarten A. Immink, David T. Martin, Hunter Bennett, and Robert G. Crowther

The purpose of this study was to investigate the dose–response effect of a high-load, 6-repetition, maximum effort inertial flywheel (IFw) squat postactivation performance enhancement (PAPE) protocol on countermovement jump (CMJ) performance metrics. Thirteen subjects completed 5 squat testing sessions: 1 session to determine back-squat 6-repetition maximum, 1 session to determine 6-repetition maximum IFw load, and 3 sessions to investigate the dose–response effect of an IFw PAPE protocol set at the load determined in the second session. In the IFw PAPE sessions, subjects completed either 1, 2, or 3 sets of IFw squats, then performed 5 CMJs over 12 minutes (1, 3, 6, 9, and 12 min post-IFw). All CMJ tests were conducted on a force platform where CMJ performance outcomes and impulse variables were calculated. There was no main time or volume effect for jump height, contact time, reactive strength index, peak force, or any of the impulse variables. A main time effect was identified for flight time (P = .006, effect size = 0.24) and peak power (P = .001, effect size = 0.28). The lack of change in jump height may indicate that too much fatigue was generated following this near-maximal IFw squat protocol, thereby reducing the PAPE effect.

Restricted access

Lower-Extremity Energetic Distribution During Rate-Controlled Ballet Jumps (Sautés) in Healthy Dancers

Amanda C. Yamaguchi, Lindsey H. Trejo, Hai-Jung Steffi Shih, David Ortiz-Weissberg, and Kornelia Kulig

Dancers frequently perform jumps in the context of a prolonged, continuous dance piece. The purpose of this study is to explore the lower-extremity energetics in healthy dancers performing repetitive dance jumps (sautés) before and after typical dance-specific choreography. Lower-extremity kinetic data were collected from 14 healthy female dancers during a series of sautés performed before and after 3 minutes of dance. Percent contributions of the lower-extremity joints to the whole-limb mechanical energy expenditure during ground contact were calculated. The jumps performed at the beginning were compared with the jumps at the end of the dance choreography. Dancers maintained the jump rate and consistent whole-limb mechanical energy expenditure between the jump series. As expected, for both jump series, the sautés had greater relative energetic contribution from the ankle and knee as compared with lesser contribution from the hip and toe. However, we observed lesser contribution from the knee and greater contribution from the hip after a 3-minute dance. After performing typical dance choreography, the dancers demonstrated a distal to proximal redistribution of individual joints’ contribution to whole-limb mechanical energy expenditure.

Restricted access

Impaired Neuromotor Control During Gait in Concussed Adolescents—A Frequency Analysis

Divya Jain, Valentina Graci, Megan E. Beam, Christina L. Master, Laura A. Prosser, Catherine C. McDonald, and Kristy B. Arbogast

Disruptions in gait function are common after concussion in adolescents; however, the neuromotor control deficits driving these gait disruptions are not well known. Fifteen concussed (age mean [SD]): 17.4 [0.6], 13 females, days since injury: 26.3 [9.9]) and 17 uninjured (age: 18.0 [0.7], 10 females) adolescents completed 3 trials each of single-task gait and dual-task gait (DT). During DT, participants simultaneously walked while completing a serial subtraction task. Gait metrics and variability in instantaneous mean frequency in lower extremity muscles were captured by inertial sensors and surface electromyography, respectively. A 2-way analysis of covariance was used to compare gait metrics across groups and conditions. Functional principal components analysis was used to identify regions of variability in instantaneous mean frequency curves. Functional principal component scores were compared across groups using a Welch statistic. Both groups displayed worse performance on gait metrics during DT condition compared to single-task, with no differences between groups (P < .001). Concussed adolescents displayed significantly greater instantaneous mean frequency, indicated by functional principal component 1, in the tibialis anterior, biceps femoris, and semitendinosus (P < .05) during single-task and DT compared with uninjured adolescents. Our observations suggest that concussed adolescents display inefficient motor unit recruitment lasting longer than 2 weeks following injury, regardless of the addition of a secondary task.

Restricted access

Volume 39 (2023): Issue 6 (Dec 2023)

Restricted access

The Biomechanics Research and Innovation Challenge: Development, Implementation, Uptake, and Reflections on the Inaugural Program

Celeste E. Coltman, Martina Barzan, Manuela Besomi, Victoria Brackley, Jaquelin A. Bousie, Julie Choisne, Laura E. Diamond, Taylor J.M. Dick, Nicole D’Souza, Samantha Fien, Alycia Fong Yan, Sheridan A. Gho, Alexandra Giraldo-Pedroza, Laura A. Hutchinson, Laura V. Hutchison, Crystal O. Kean, Maddison M. Kirk, Amy Lewis, Jayishini N. Maharaj, Nina Maher, Kerry J. Mann, Suzanne Martin, Karen J. Mickle, Azadeh Nasseri, Isobel H. Oon, Rory Purdie, Shayan L. Quinlan, Ceridwen R. Radcliffe, Suzanne J. Snodgrass, Siddharth Verma, and Michelle Hall

Biomechanics as a discipline is ideally placed to increase awareness and participation of girls and women in science, technology, engineering, and mathematics. A nationwide Biomechanics and Research Innovation Challenge (BRInC) centered on mentoring and role modeling was developed to engage high school girls (mentees) and early-mid-career women (mentors) in the field of biomechanics through the completion of a 100-day research and/or innovation project. This manuscript describes the development, implementation, and uptake of the inaugural BRInC program and synthesizes the research and innovation projects undertaken, providing a framework for adoption of this program within the global biomechanics community. Eighty-seven high school girls in years 9 and 10 (age range: 14–16 y) were mentored in teams (n = 17) by women in biomechanics (n = 24). Using a design thinking approach, teams generated solutions to biomechanics-based problem(s)/research question(s). Eight key reflections on program strengths, as well as areas for improvement and planned changes for future iterations of the BRInC program, are outlined. These key reflections highlight the innovation, impact, and scalability of the program; the importance of a program framework and effective communication tools; and implementation of strategies to sustain the program as well as the importance of diversity and building a sense of community.

Restricted access

The Combined Influence of Infant Carrying Method and Motherhood on Gait Mechanics

Kathryn L. Havens, Sarah Goldrod, and Erin M. Mannen

Postpartum mothers are susceptible to lumbopelvic pain which may be exacerbated by loading, like carrying their infant in arms and with baby carriers. Nulliparous women carrying infant mannequins may biomechanically mimic mother–infant dyad, but this has not been studied. The purpose of our study was to investigate biomechanical differences of 10 mothers carrying their infants and 10 nulliparous women carrying infant mannequins under 3 gait conditions: carrying nothing, carrying in arms, and carrying in a baby carrier (babywearing). Spatiotemporal gait parameters, peak ground reaction forces and impulses, and lower extremity and trunk kinematics were collected using motion capture and force plates and compared using a mixed 2 × 3 (parity × condition) analysis of variance (α ≤ .05). The largest differences occurred between carrying conditions: carrying in arms or babywearing increased vertical and anteroposterior ground reaction forces, trunk extension, ankle dorsiflexion, and hip and knee flexion. Kinematic differences were identified between arms and babywearing conditions. Together this suggests alterations in joint loading for both groups. Our study also contributes a novel understanding of postpartum health by demonstrating alterations in step time, anterior forces, and ankle and knee mechanics, suggesting that during gait, mothers carrying their own infants choose different propulsive strategies than nulliparous women carrying mannequins.

Restricted access

Sex-Related Differences in Shoulder Complex Joint Dynamics Variability During Pediatric Manual Wheelchair Propulsion

Joshua M. Leonardis, Alyssa J. Schnorenberg, Lawrence C. Vogel, Gerald F. Harris, and Brooke A. Slavens

More than 80% of adult manual wheelchair users with spinal cord injuries will experience shoulder pain. Females and those with decreased shoulder dynamics variability are more likely to experience pain in adulthood. Sex-related differences in shoulder dynamics variability during pediatric manual wheelchair propulsion may influence the lifetime risk of pain. We evaluated the influence of sex on 3-dimensional shoulder complex joint dynamics variability in 25 (12 females and 13 males) pediatric manual wheelchair users with spinal cord injury. Within-subject variability was quantified using the coefficient of variation. Permutation tests evaluated sex-related differences in variability using an adjusted critical alpha of P = .001. No sex-related differences in sternoclavicular or acromioclavicular joint kinematics or glenohumeral joint dynamics variability were observed (all P ≥ .042). Variability in motion, forces, and moments are considered important components of healthy joint function, as reduced variability may increase the likelihood of repetitive strain injury and pain. While further work is needed to generalize our results to other manual wheelchair user populations across the life span, our findings suggest that sex does not influence joint dynamics variability in pediatric manual wheelchair users with spinal cord injury.

Restricted access

The Effects of Optical Flow Perturbations on Standing Balance in People With Multiple Sclerosis

Olivia S. Elie, Jason R. Franz, and Brian P. Selgrade

Multiple sclerosis is a neurodegenerative disease that causes balance deficits, even in early stages. Evidence suggests that people with multiple sclerosis (PwMS) rely more on vision to maintain balance, and challenging balance with optical flow perturbations may be a practical screening for balance deficits. Whether these perturbations affect standing balance in PwMS is unknown. Therefore, the purpose of this study was to examine how optical flow perturbations affect standing balance in PwMS. We hypothesized that perturbations would cause higher variability in PwMS compared with matched controls during standing and that standing balance would be more susceptible to anterior–posterior (A–P) perturbations than medial–lateral (M–L) perturbations. Thirteen PwMS and 13 controls stood under 3 conditions: unperturbed, M–L perturbation, and A–P perturbations. A–P perturbations caused significantly higher A–P trunk sway variability in PwMS than controls, although both groups had similar center-of-pressure variability. Both perturbations increased variability in A–P trunk sway and center of pressure. Trunk variability data supported the hypothesis that PwMS were more susceptible to optical flow perturbations than controls. However, the hypothesis that A–P perturbations would affect balance more than M–L perturbations was partially supported. These results suggest potential for optical flow perturbations to identify balance deficits in PwMS.

Restricted access

Comparison Between Movement Pattern Training and Strengthening on Kinematics and Kinetics in Patients With Chronic Hip-Related Groin Pain

Ramya Palaniappan, Michael D. Harris, Karen Steger-May, Allyn M. Bove, G. Kelley Fitzgerald, John C. Clohisy, and Marcie Harris-Hayes

The purpose of this study was to compare the preliminary effects of movement pattern training (MoveTrain) versus strengthening/flexibility (standard) treatment on hip and pelvic biomechanics in patients with chronic hip-related groin pain. This is a secondary analysis of data collected during a pilot randomized clinical trial. Thirty patients with hip pain, between the ages of 15 and 40 years, were randomized to MoveTrain or standard. Both groups completed 10 treatment sessions over 12 weeks along with a daily home exercise program. Three-dimensional motion analysis was used to collect kinematic and kinetic data of the pelvis and hip during a single-leg squat task at pretreatment and immediately posttreatment. Compared with the standard group, the MoveTrain group demonstrated smaller hip adduction angles (P = .006) and smaller hip external adduction moments (P = .008) at posttreatment. The desired changes to hip joint biomechanics, as found in this study, may require specificity in training that could allow health care professionals to better customize the rehabilitation of patients with hip pain. These findings can also be applied to the design and implementation of future clinical trials to strengthen our understanding of the long-term implications of different rehabilitation techniques for patients with hip pain.

Restricted access

The Contribution of Lower-Body Kinematics to Pitching and Hitting Performance in Baseball: Utilizing the OpenBiomechanics Project

Corey S. Perrett

As markerless motion capture systems become more affordable than ever, it is becoming far easier to collect and analyze kinematic data on baseballers. To ensure this data can be used impactfully, coaches and practitioners should possess a good understanding of specific technique characteristics that are associated with enhanced performance in pitchers and hitters. This study used the open-source data provided by Driveline Baseball’s OpenBiomechanics Project to evaluate the contribution of lower-body kinematics to pitch velocity and bat speed. In addition to correlational analyses to examine the association between discrete kinematic variables and performance, statistical nonparametric mapping was used to compare slow and fast velocity groups across the entirety of pitching and hitting motions from peak knee height to ball release/contact. It was found that rotation of the trail leg and extension of the lead knee were both associated with performance in pitchers and hitters. Consequently, coaches and practitioners should ensure that individuals possess an adequate level of strength and flexibility to facilitate optimal movement of the trail hip and lead knee during pitching and hitting movements. If deficiencies exist, then training programs should be designed to address these issues and eventually bring about an improvement in performance.