Browse
Volume 33 (2023): Issue 6 (Nov 2023)
Partly Substituting Whey for Collagen Peptide Supplementation Improves Neither Indices of Muscle Damage Nor Recovery of Functional Capacity During Eccentric Exercise Training in Fit Males
Ruben Robberechts, Chiel Poffé, Noémie Ampe, Stijn Bogaerts, and Peter Hespel
Previous studies showed that collagen peptide supplementation along with resistance exercise enhance muscular recovery and function. Yet, the efficacy of collagen peptide supplementation in addition to standard nutritional practices in athletes remains unclear. Therefore, the objective of the study was to compare the effects of combined collagen peptide (20 g) and whey protein (25 g) supplementation with a similar daily protein dose (45 g) of whey protein alone on indices of muscle damage and recovery of muscular performance during eccentric exercise training. Young fit males participated in a 3-week training period involving unilateral eccentric exercises for the knee extensors. According to a double-blind, randomized, parallel-group design, before and after training, they received either whey protein (n = 11) or whey protein + collagen peptides (n = 11). Forty-eight hours after the first training session, maximal voluntary isometric and dynamic contraction of the knee extensors were transiently impaired by ∼10% (P time < .001) in whey protein and whey protein + collagen peptides, while creatine kinase levels were doubled in both groups (P time < .01). Furthermore, the training intervention improved countermovement jump performance and maximal voluntary dynamic contraction by respectively 8% and 10% (P time < .01) and increased serum procollagen type 1N-terminal peptide concentration by 10% (P time < .01). However, no differences were found for any of the outcomes between whey and whey protein + collagen peptides. In conclusion, substituting a portion of whey protein for collagen peptide, within a similar total protein dose, improved neither indices of eccentric muscle damage nor functional outcomes during eccentric training.
Guarana (Paullinia cupana) but Not Low-Dose Caffeine Improves Cycling Time-Trial Performance Versus Placebo
Eduardo M. Penna, Alec Harp, Brian Hack, Tyler N. Talik, and Melinda Millard-Stafford
Guarana (GUA) seed extract, containing caffeine (CAF) and additional bioactive compounds, may positively affect mental performance, but evidence regarding exercise is limited. This investigation assessed acute GUA ingestion compared with CAF on endurance performance. Eleven endurance-trained noncyclists and cyclists ( = 49.7 ± 5.9, 60.4 ± 4.6 ml·kg·min−1) completed a double-blind, crossover experiment after ingesting (a) 100 mg CAF, (b) 500 mg GUA (containing 130 mg CAF), or (c) placebo (P) prior to 60-min fixed cycling workload (FIX) + 15-min time trial. Oxygen uptake, heart rate, respiratory exchange ratio, blood glucose, and lactate were not different (p ≥ .052) during FIX. A significant interaction (p = .042) for perceived exertion was observed at 50-min FIX with lower rating (p = .023) for GUA versus CAF but not compared with P. Work accumulated over 15-min time trial was greater (p = .038) for GUA versus P due to higher early (1–11 min) work outputs. Work performance favored (effect size = 0.18; 95% confidence interval [0.003, 0.355], p = .046) GUA (241.4 ± 39.9 kJ) versus P (232.1 ± 46.6 kJ), but CAF (232.3 ± 43.9) was not different from GUA (effect size = 0.19; 95% confidence interval [−0.022, 0.410], p = .079) or P. Postexercise strength loss was not attenuated with GUA (−5.6 ± 8.5%) or CAF (−8.3 ± 9.4%) versus P (−10.3 ± 5.1%). Acute GUA ingestion improved work performance relative to P, but effects were trivial to small and unrelated to altered substrate oxidation or muscular strength. Ergogenicity may involve central mechanisms reducing perceived effort with GUA (containing 130 mg caffeine). Due to issues related to identical matching of dosage, whether GUA confers additional benefits beyond its CAF content cannot be determined at present.
Jumping Exercise Combined With Collagen Supplementation Preserves Bone Mineral Density in Elite Cyclists
Luuk Hilkens, Nick van Schijndel, Vera C.R. Weijer, Lieselot Decroix, Judith Bons, Luc J.C. van Loon, and Jan-Willem van Dijk
This study assessed the effect of combined jump training and collagen supplementation on bone mineral density (BMD) in elite road-race cyclists. In this open-label, randomized study with two parallel groups, 36 young (21 ± 3 years) male (n = 8) and female (n = 28) elite road-race cyclists were allocated to either an intervention (INT: n = 18) or a no-treatment control (CON: n = 18) group. The 18-week intervention period, conducted during the off-season, comprised five 5-min bouts of jumping exercise per week, with each bout preceded by the ingestion of 15 g hydrolyzed collagen. Before and after the intervention, BMD of various skeletal sites and trabecular bone score of the lumbar spine were assessed by dual-energy X-ray absorptiometry, along with serum bone turnover markers procollagen Type I N propeptide and carboxy-terminal cross-linking telopeptide of Type I collagen. BMD of the femoral neck decreased in CON (from 0.789 ± 0.104 to 0.774 ± 0.095 g/cm2), while being preserved in INT (from 0.803 ± 0.058 to 0.809 ± 0.066 g/cm2; Time × Treatment, p < .01). No differences between treatments were observed for changes in BMD at the total hip, lumbar spine, and whole body (Time × Treatment, p > .05 for all). Trabecular bone score increased from 1.38 ± 0.08 to 1.40 ± 0.09 in CON and from 1.46 ± 0.08 to 1.47 ± 0.08 in INT, respectively (time effect: p < .01), with no differences between treatments (Time × Treatment: p = .33). Serum procollagen Type I N propeptide concentrations decreased to a similar extent in CON (83.6 ± 24.8 to 71.4 ± 23.1 ng/ml) and INT (82.8 ± 30.7 to 66.3 ± 30.6; time effect, p < .001; Time × Treatment, p = .22). Serum carboxy-terminal cross-linking telopeptide of Type I collagen concentrations did not change over time, with no differences between treatments (time effect, p = .08; Time × Treatment, p = .58). In conclusion, frequent short bouts of jumping exercise combined with collagen supplementation beneficially affects femoral neck BMD in elite road-race cyclists.
Muscle Mass and Strength Gains Following Resistance Exercise Training in Older Adults 65–75 Years and Older Adults Above 85 Years
Gabriel Nasri Marzuca-Nassr, Andrea Alegría-Molina, Yuri SanMartín-Calísto, Macarena Artigas-Arias, Nolberto Huard, Jorge Sapunar, Luis A. Salazar, Lex B. Verdijk, and Luc J.C. van Loon
Resistance exercise training (RET) can be applied effectively to increase muscle mass and function in older adults (65–75 years). However, it has been speculated that older adults above 85 years are less responsive to the benefits of RET. This study compares the impact of RET on muscle mass and function in healthy older adults 65–75 years versus older adults above 85 years. We subjected 17 healthy older adults 65–75 years (OLDER 65–75, n = 13/4 [female/male]; 68 ± 2 years; 26.9 ± 2.3 kg/m2) and 12 healthy older adults above 85 years (OLDER 85+, n = 7/5 [female/male]; 87 ± 3 years; 26.0 ± 3.6 kg/m2) to 12 weeks of whole-body RET (three times per week). Prior to, and after 6 and 12 weeks of training, quadriceps and lumbar spine vertebra 3 muscle cross-sectional area (computed tomography scan), whole-body lean mass (dual-energy X-ray absorptiometry scan), strength (one-repetition maximum test), and physical performance (timed up and go and short physical performance battery) were assessed. Twelve weeks of RET resulted in a 10% ± 4% and 11% ± 5% increase in quadriceps cross-sectional area (from 46.5 ± 10.7 to 51.1 ± 12.1 cm2, and from 38.9 ± 6.1 to 43.1 ± 8.0 cm2, respectively; p < .001; η2 = .67); a 2% ± 3% and 2% ± 3% increase in whole-body lean mass (p = .001; η2 = .22); and a 38% ± 20% and 46% ± 14% increase in one-repetition maximum leg extension strength (p < .001; η2 = .77) in the OLDER 65–75 and OLDER 85+ groups, respectively. No differences in the responses to RET were observed between groups (Time × Group, all p > .60; all η2 ≤ .012). Physical performance on the short physical performance battery and timed up and go improved (both p < .01; η2 ≥ .22), with no differences between groups (Time × Group, p > .015; η2 ≤ .07). Prolonged RET increases muscle mass, strength, and physical performance in the aging population, with no differences between 65–75 years and 85+ years older adults.
Assessment of Osteogenic Exercise Efficacy via Bone Turnover Markers in Premenopausal Women: A Randomized Controlled Trial
Horacio Sanchez-Trigo, Wolfgang Kemmler, Gustavo Duque, and Borja Sañudo
Assessing bone’s response to physical activity interventions is challenging. This randomized controlled trial investigates if changes in bone turnover markers can offer an early evaluation of a physical activity intervention’s effectiveness in improving bone mineral density (BMD) in premenopausal women. Participants in the intervention group (n = 27, with 24 completing the trial) were instructed to walk at least 10,000 steps every day on a brisk walk and to execute 60 jumps daily, each surpassing 4g of acceleration, using an accelerometer-based wearable device. Meanwhile, the control group (n = 26, with 18 completing the trial) continued with their usual lifestyle. Bone turnover markers, comprising of C-terminal telopeptide of Type I collagen, procollagen Type 1 N-terminal propeptide, and total osteocalcin (carboxylated and undercarboxylated) were measured at baseline and midway through the intervention (3 months). Dual-energy X-ray absorptiometry scans of the hip and lumbar spine were conducted at baseline and the end of the intervention (6 months) to estimate BMD. Analysis of covariance exhibited significant differences between groups in procollagen Type 1 N-terminal propeptide (−6.74 μg/L, p = .023) and C-terminal telopeptide of Type I collagen (−83 ng/L, p = .043) after 3 months, and in femoral neck BMD (+0.024 g/cm2, p = .016), total hip BMD (+0.036 g/cm2, p = .004), and lumbar spine BMD (+0.026 g/cm2, p = .020) after 6 months. A significant correlation (r = −.73; p < .001) was detected between reductions in C-terminal telopeptide of Type I collagen and increases in femoral neck BMD. In conclusion, this intervention improved BMD in premenopausal women, with bone turnover markers potentially useful for early intervention assessment, though further research is needed.
The Effect of Exercise Intensity on Carbohydrate Sparing Postexercise: Implications for Postexercise Hypoglycemia
Raymond J. Davey, Mohamad H. Jaafar, Luis D. Ferreira, and Paul A. Fournier
The purpose of this study was to determine the effect of exercise intensity on the proportion and rate of carbohydrate oxidation and glucoregulatory hormone responses during recovery from exercise. Six physically active participants completed 1 hr of low-intensity (LI; 50% lactate threshold) or moderate-intensity (MI; 100% lactate threshold) exercise on separate days following a randomized counterbalanced design. During exercise and for 6 hr of recovery, samples of expired air were collected to determine oxygen consumption, respiratory exchange ratio, energy expenditure, and substrate oxidation rates. Blood samples were also collected to measure glucoregulatory hormones (catecholamines, GH) and metabolites (glucose, free fatty acids, lactate, pH, and bicarbonate). During exercise, respiratory exchange ratio, energy expenditure, and the proportion and rate of carbohydrate (CHO) oxidation were higher during MI compared with LI. However, during recovery from MI, respiratory exchange ratio and the proportion and rate of CHO oxidation were lower than preexercise levels and corresponding LI. During exercise and early recovery, catecholamines and growth hormone were higher in MI than LI, and there was a trend for higher levels of free fatty acids in the early recovery from MI compared with LI. In summary, CHO oxidation during exercise increases with exercise intensity but there is a preference for CHO sparing (and fat oxidation) during recovery from MI exercise compared with LI exercise. This exercise intensity-dependent shift in substrate oxidation during recovery is explained, in part, by the pattern of change of key glucoregulatory hormones including catecholamines and growth hormone and plasma fatty acid concentrations.
Erratum. Effect of Moderate Versus Vigorous Exercise Intensity on Body Composition in Young Untrained Adults: The Activating Brown Adipose Tissue Through Exercise (ACTIBATE) Randomized Controlled Trial
International Journal of Sport Nutrition and Exercise Metabolism
Effects of Ketone Monoester and Bicarbonate Co-Ingestion on Cycling Performance in WorldTour Cyclists
Domingo Jesús Ramos-Campo, Francisco Javier López-Román, Silvia Pérez-Piñero, Raquel Ortolano, María Salud Abellán-Ruiz, Enrique Molina Pérez de los Cobos, Antonio Jesús Luque-Rubia, Dag Van Elslande, and Vicente Ávila-Gandía
The present randomized study investigated the effect of acute supplementation of 800 mg/kg of ketone monoester ingestion (KE) or placebo (PL) and 210 mg/kg of NaHCO3 co-ingestion on cycling performance of WorldTour cyclists during a road cycling stage simulation. Twenty-eight cyclists participated in the study (27.46 ± 4.32 years; 1.80 ± 0.06 m; 69.74 ± 6.36 kg). Performance, physiological, biochemical, and metabolism outcomes, gut discomfort, and effort perceived were assessed during a road cycling simulation composed of an 8-min time-trial (TT) performance + 30-s TT + 4.5 hr of outdoor cycling + a second 8-min TT + a second 30-s TT. Greater absolute and relative mean power during the first 8-min TT (F = 5.067, p = .033,
Effect of Moderate Versus Vigorous Exercise Intensity on Body Composition in Young Untrained Adults: The Activating Brown Adipose Tissue Through Exercise (ACTIBATE) Randomized Controlled Trial
Francisco J. Amaro-Gahete, María Ruiz-Ruiz, Amalia Cano-Nieto, Guillermo Sanchez-Delgado, Juan M.A. Alcantara, Francisco M. Acosta, Idoia Labayen, Francisco B. Ortega, and Jonatan R. Ruiz
The present study aimed to investigate the effect of a 24-week aerobic + resistance training programs at moderate versus vigorous intensity on body composition, and the persistence of the changes after a 10-month free-living period, in young untrained adults. This report is based on a secondary analysis from the activating brown adipose tissue through exercise (ACTIBATE) single-center unblinded randomized controlled trial. A total of 144 young adults (65.6% women) aged 18–25 years were randomly allocated to three different groups: (a) aerobic + resistance exercise training program based on the international physical activity recommendations at vigorous intensity (Ex-Vigorous group), (b) at moderate intensity (Ex-Moderate group), and (c) control group (no exercise). Body composition outcomes were determined by a dual-energy X-ray absorptiometry scanner. Both Ex-Vigorous and Ex-Moderate decreased body weight, fat mass, and visceral adipose tissue mass in a similar manner (all p < .04). After a 10-month free-living period, these parameters returned to baseline levels in both exercise groups (all ps < .03). No differences between the exercise groups and the control group were noted in lean mass changes (all ps > .1). A 24-week aerobic + resistance training intervention based on the international physical activity recommendations was enough to improve body weight, fat mass, and visceral adipose tissue mass in untrained young adults, independently of the exercise intensity (moderate vs. vigorous).