Browse

You are looking at 51 - 60 of 4,925 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

Matthew Slopecki, Fariba Hasanbarani, Chen Yang, Christopher A. Bailey, and Julie N. Côté

Fatigue at individual joints is known to affect interjoint coordination during repetitive multijoint tasks. However, how these coordination adjustments affect overall task stability is unknown. Twelve participants completed a repetitive pointing task at rest and after fatigue of the shoulder, elbow, and trunk. Upper-limb and trunk kinematics were collected. Uncontrolled manifold framework was applied to a kinematic model to link elemental variables to endpoint fingertip position. Mixed and one-way analysis of variances determined effects (phase and fatigue location) on variance components and synergy index, respectively. The shoulder fatigue condition had the greatest impact in causing increases in variance components and a decreased synergy index in the late phase of movement, suggesting more destabilization of the interjoint task caused by shoulder fatigue.

Restricted access

San Hong, Jieun Yang, Donghyun Kim, and Yongho Lee

The purpose of this study was to draw consensus among an expert panel regarding essential elements of an accessible fitness center guide for people with intellectual disabilities that will enable them to engage in physical activity fully and effectively. The study was situated in the socioecological model of disability. Researchers drew expert consensus regarding the essential features of accessible guides in fitness environments. A three-round Delphi procedure was used, involving repeated circulation of the questionnaire to an expert panel (N = 33). The panel was asked to rate the importance and adequacy of 66 items regarding the accessible fitness guide. A consensus was reached regarding 43 items after three rounds. The items include 7 body-weight exercises, 2 machine exercises, 12 environment-related items, 15 exercise preparations, 4 social etiquettes, and 3 emergencies.

Restricted access

Cagla Ozkul, Kader Eldemir, Sefa Eldemir, Muhammed Seref Yildirim, Fettah Saygili, Arzu Guclu-Gunduz, and Ceyla Irkec

This study aimed to investigate the relationship of sit-to-stand and walking performance with leg muscle strength and core muscle endurance in people with multiple sclerosis (PwMS) with mild disabilities. In this study, 49 PwMS (Expanded Disability Status Scale score = 1.59 ± 0.79) and 26 healthy controls were enrolled. The functional performances, including sit-to-stand and walking performances, were evaluated with the five-repetition sit-to-stand test, timed up and go test, and 6-min walking test. The PwMS finished significantly slower five-repetition sit-to-stand, timed up and go, and 6-min walking test than the healthy controls. In addition, the significant contributors were the weakest trunk lateral flexor endurance for five-repetition sit-to-stand; the Expanded Disability Status Scale score, and the weakest hip adductor muscle for timed up and go; the weakest hip extensor muscles strength for 6-min walking test. The functional performances in PwMS, even with mild disabilities, were lower compared with healthy controls. Decreases in both leg muscle strength and core muscle endurance are associated with lower functional performance in PwMS.

Restricted access

Ashwini Kulkarni, Chuyi Cui, Shirley Rietdyk, and Satyajit Ambike

Maintaining a consistent relationship between each footfall and the body’s motion is a key mechanism to maintain balance while walking. However, environmental features, for example, puddles/obstacles, impose additional constraints on foot placement. This study investigated how healthy young individuals alter foot placements to simultaneously manage body-centric and environmental constraints during an obstacle-crossing task. Consistent step length promotes balance for all steps, whereas accurate foot placement around the obstacle is essential to avoid a trip. While crossing an obstacle, any error in positioning one foot relative to the obstacle can be compensated by selecting the placement of the subsequent step. However, compensation will necessarily alter step length from its average value. The interstep covariance index computed from two consecutive foot placements was used to quantify this tradeoff between body-centric and environmental constraints for six consecutive steps while approaching, crossing, and resuming unobstructed gait after crossing the obstacle. The index declined only when either one or both feet were adjacent to the obstacle. The decline was driven in part by a tendency toward higher step length variability. Thus, changes in the stepping patterns to address the environmental constraint occurred at the cost of the body-centric constraint. However, the step length never ceased to be controlled; the interstep covariance index was positive for all steps. Overall, participants adapted foot placement control to account for the larger threat to balance. The environmental constraint was prioritized only when a potential trip posed greater threat to balance compared with the threat posed by variable step length.

Open access

Jeffrey J. Martin

Restricted access

John H. Wearden

This article discusses material from the doctoral thesis of Wilhlem Camerer, which was devoted to the topic of the timing of voluntary movements, and appeared in 1866, thus being one of the earliest studies of any aspect of time perception. It was conducted under the supervision of Karl von Vierordt, at the University of Tübingen in Germany. The data reported come from Camerer’s attempts to make a movement over a distance of about 65 mm, either by flexion or extension of his arm, with the behavior recorded via a kymograph, and measured from its trace. Most of his data come from his attempts to make movements at a constant speed, with the speed varying from one trial to another from 5 to 60 mm/s, but he also conducted a study where the movement was intended to be accelerated or decelerated during the trial. In general, when extension movements were intended to be performed with constant speed, a gradual increase in movement speed usually occurred throughout the movement duration. For flexions the opposite occurred, albeit less clearly. Camerer linked the apparent distortions of speed to Vierordt’s experiments on the perception of time and his thesis contains what is probably the first mention of Vierordt’s Law, the proposition that short times are judged as longer, and long times as shorter, than they really are.

Restricted access

Francisco Tomás González-Fernández, Pedro Ángel Latorre-Román, Juan Parraga-Montilla, Alfonso Castillo-Rodriguez, and Filipe Manuel Clemente

The aim of this study was to analyze the acute effects of an incremental resistance test on psychomotor vigilance in 16 soccer players under-19 years old (age 16.42 ± 0.85 years). Borg 15-point subjective perception of effort scale, the psychomotor vigilance task test, and the Yo-Yo intermittent recovery test were used. Four evaluation sessions were conducted with different intensities of efforts (30%–40%, 60%–75%, 80%–90%, and 100%) on different days (counterbalanced order). A repeated-measures analysis of variance was performed in the reaction time of the psychomotor vigilance task. The results showed that participants responded faster during efforts between 80% and 90% of maximal oxygen uptake (501.20 ± 70.77 ms). From that threshold, the players decreased their performance through a longer reaction time (601.23 ± 85.05 ms; p value < .001). The main findings were that the reaction time performance was worse at the lowest and highest effort conditions (5 and 17 km/hr, respectively). This fact helps to focus on the importance of designing and proposing training tasks with medium–high efforts to provoke optimal reaction times in young soccer players.

Restricted access

Kundan Joshi and Blake M. Ashby

Experimental motion capture studies have commonly considered the foot as a single rigid body even though the foot contains 26 bones and 30 joints. Various methods have been applied to study rigid body deviations of the foot. This study compared 3 methods: distal foot power (DFP), foot power imbalance (FPI), and a 2-segment foot model to study foot power and work in the takeoff phase of standing vertical jumps. Six physically active participants each performed 6 standing vertical jumps from a starting position spanning 2 adjacent force platforms to allow ground reaction forces acting on the foot to be divided at the metatarsophalangeal (MTP) joints. Shortly after movement initiation, DFP showed a power absorption phase followed by a power generation phase. FPI followed a similar pattern with smaller power absorption and a larger power generation compared to DFP. MTP joints primarily generated power in the 2-segment model. The net foot work was –4.0 (1.0) J using DFP, 1.8 (1.1) J using FPI, and 5.1 (0.5) J with MTP. The results suggest that MTP joints are only 1 source of foot power and that differences between DFP and FPI should be further explored in jumping and other movements.

Restricted access

Amanda E. Munsch, Alyssa Evans-Pickett, Hope Davis-Wilson, Brian Pietrosimone, and Jason R. Franz

Insufficient quadriceps force production and altered knee joint biomechanics after anterior cruciate ligament reconstruction (ACLR) may contribute to a heightened risk of osteoarthritis. Quadriceps muscle lengthening dynamics affect force production and knee joint loading; however, no study to our knowledge has quantified in vivo quadriceps dynamics during walking in individuals with ACLR or examined correlations with joint biomechanics. Our purpose was to quantify bilateral vastus lateralis (VL) fascicle length change and the association thereof with gait biomechanics during weight acceptance in individuals with ACLR. The authors hypothesized that ACLR limbs would exhibit more fascicle lengthening than contralateral limbs. The authors also hypothesized that ACLR limbs would exhibit positive correlations between VL fascicle lengthening and knee joint biomechanics during weight acceptance in walking. The authors quantified VL contractile dynamics via cine B-mode ultrasound imaging in 18 individuals with ACLR walking on an instrumented treadmill. In partial support of our hypothesis, ACLR limb VL fascicles activated without length change on average during weight acceptance while fascicle length on the contralateral limb decreased on average. The authors found a positive association between fascicle lengthening and increase in knee extensor moments in both limbs. Our results suggest that examining quadriceps muscle dynamics may elucidate underlying mechanisms relevant to osteoarthritis.