Browse

You are looking at 61 - 70 of 2,546 items for :

  • Sport and Exercise Science/Kinesiology x
  • International Journal of Sports Physiology and Performance x
  • Refine by Access: All Content x
Clear All
Restricted access

Hemodynamic Effects of Intermittent Pneumatic Compression on Athletes: A Double-Blinded Randomized Crossover Study

Filipe Maia, Marta V.B. Machado, Gustavo Silva, Fábio Yuzo Nakamura, and João Ribeiro

Purpose: There are multiple postexercise recovery technologies available in the market based on the assumption of blood-flow enhancement. Lower-limb intermittent pneumatic compression (IPC) has been widely used, but the available scientific evidence supporting its effectiveness remains scarce, requiring a deeper investigation into its underlying mechanisms. The aim of this study was to assess the hemodynamic effects caused by the use of IPC at rest. Methods: Twenty-two soccer and track and field athletes underwent two 15-minute IPC protocols (moderate- [80 mm Hg] and high-pressure [200 mm Hg]) in a randomized order. Systolic peak velocity, end-diastolic peak velocity, arterial diameter, and heart rate were measured before, during (at the eighth minute), and 2 minutes after each IPC protocol. Results: Significant effects were observed between before and during (eighth minute) the IPC protocol for measures of systolic (P < .001) and end-diastolic peak velocities (P < .001), with the greater effects observed during the high-pressure protocol. Moreover, 2 minutes after each IPC protocol, hemodynamic variables returned to values close to baseline. Arterial diameter presented significant differences between pressures during the IPC protocols (P < .05), while heart rate remained unaltered. Conclusion: IPC effectively enhances transitory blood flow of athletes, particularly when applying high-pressure protocols.

Restricted access

Kinetics, Kinematics, and Muscle Activity Patterns During Back Squat With Different Contributions of Elastic Resistance

Lin Shi, Mark Lyons, Michael Duncan, Sitong Chen, Dong Han, and Chengbo Yang

Purpose: Performing back squats with elastic bands has been widely used in resistance training. Although research demonstrated greater training effects obtained from adding elastic bands to the back squat, little is known regarding the optimal elastic resistance and how it affects neuromuscular performance. This study aimed to compare the force, velocity, power, and muscle activity during back squats with different contributions of elastic resistance. Methods: Thirteen basketball players performed 3 repetitions of the back squat at 85% of 1-repetition maximum across 4 conditions: (1) total load from free weight and (2) 20%, (3) 30%, and (4) 40% of the total load from elastic band and the remaining load from free weight. The eccentric and concentric phases of the back squat were divided into upper, middle, and bottom phases. Results: In the eccentric phase, mean velocity progressively increased with increasing elastic resistance, and muscle activity of the vastus medialis and rectus femoris significantly increased with the largest elastic resistance in the upper phase (P ≤ .036). In the concentric phase, mean power (P ≤ .021) and rate of force development (P ≤ .002) significantly increased with increasing elastic resistance. Furthermore, muscle activity of the vastus lateralis and vastus medialis significantly improved with the largest elastic resistance in the upper phases (P ≤ .021). Conclusion: Velocity, power, rate of force development, and selective muscle activity increased as the elastic resistance increased in different phases during the back-squat exercise.

Free access

How to Equalize High- and Low-Intensity Endurance Exercise Dose

Pekka Matomäki, Olli-Pekka Nuuttila, Olli J. Heinonen, Heikki Kyröläinen, and Ari Nummela

Purpose: Without appropriate standardization of exercise doses, comparing high- (HI) and low-intensity (LI) training outcomes might become a matter of speculation. In athletic preparation, proper quantification ensures an optimized stress-to-recovery ratio. This review aims to compare HI and LI doses by estimating theoretically the conversion ratio, 1:x, between HI and LI: How many minutes, x, of LI are equivalent to 1 minute of HI using various quantification methods? A scrutinized analysis on how the dose increases in relation to duration and intensity was also made. Analysis: An estimation was conducted across 4 categories encompassing 10 different approaches: (1) “arbitrary” methods, (2) physiological and perceptual measurements during exercise, (3) postexercise measurements, and comparison to (4a) acute and (4b) chronic intensity-related maximum dose. The first 2 categories provide the most conservative estimation for the HI:LI ratio (1:1.5–1:10), and the third, slightly higher (1:4–1:11). The category (4a) provides the highest estimation (1:52+) and (4b) suggests 1:10 to 1:20. The exercise dose in the majority of the approaches increase linearly in relation to duration and exponentially in relation to intensity. Conclusions: As dose estimations provide divergent evaluations of the HI:LI ratio, the choice of metric will have a large impact on the research designs, results, and interpretations. Therefore, researchers should familiarize themselves with the foundations and weaknesses of their metrics and justify their choice. Last, the linear relationship between duration and exercise dose is in many cases assumed rather than thoroughly tested, and its use should be subjected to closer scrutiny.

Restricted access

Athletic Performance Decline Over the Life Span: Cross-Sectional and Longitudinal Analyses of Elite and Masters Track-and-Field Data

Brandon Pfeifer, W. Bradley Nelson, and Robert D. Hyldahl

Purpose : Loss of muscle power has a significant impact on mobility in geriatric populations, so this study sought to determine the extent and time course of performance decline in power-centric events throughout the life span via retrospective analyses of masters and elite track-and-field data. Methods : Four track-and-field events were selected based on maximal power output: the 100-m dash, long jump, high jump, and triple jump. Elite and masters athlete data were gathered from the World Masters Outdoor Championships and the International Amateur Athletic Federation World Athletics Championships (17,945 individual results). Data were analyzed by fitting individual and group results to quadratic and linear models. Results : Average age of peak performance in all events was 27.8 (0.8) years for men and 28.3 (0.8) years for women. Athlete performance decline best matched a linear model for the 5 years following peak performance (mean R 2  = .68 [.20]) and for ages 35–60, but best matched a quadratic model for ages 60–90 and 35–90 (mean R 2  = .75 [.12]). The average rate of decline for the masters data ages 35–60 ranged from 0.55% per year for men’s 100-m dash to 1.04% per year for women’s long jump. A significant age × sex interaction existed between men and women, with men declining faster throughout life in all events except the 100-m dash. Conclusions : Performance decline begins in the early 30s and is linear through middle age. This pattern of decline provides a basis for further research on power-decline pathophysiology and preventive measures starting in the 30s.

Restricted access

A Change-Point Method to Detect Meaningful Change in Return-to-Sport Progression in Athletes

Kate K. Yung, Ben Teune, Clare L. Ardern, Fabio R. Serpiello, and Sam Robertson

Purpose: To explore how the change-point method can be used to analyze complex longitudinal data and detect when meaningful changes (change points) have occurred during rehabilitation. Method: This design is a prospective single-case observational study of a football player in a professional club who sustained an acute lower-limb muscle injury during high-speed running in training. The rehabilitation program was entirely completed in the football club under the supervision of the club’s medical team. Four wellness metrics and 5 running-performance metrics were collected before the injury and until the player returned to play. Results: Data were collected over 130 days. In the univariate analysis, the change points for stress, sleep, mood, and soreness were located on days 30, 47, 50, and 50, respectively. The change points for total distance, acceleration, maximum speed, deceleration, and high-speed running were located on days 32, 34, 37, 41, and 41, respectively. The multivariate analysis resulted in a single change point for the wellness metrics and running-performance metrics, on days 50 and 67, respectively. Conclusions: The univariate approach provided information regarding the sequence and time point of the change points. The multivariate approach provided a common change point for multiple metrics, information that would benefit clinicians to have a broad overview of the changes in the rehabilitation process. Clinicians may consider the change-point method to integrate and visualize data from multiple sources to evaluate athletes’ progression along the return-to-sport continuum.

Restricted access

Predicting Future Athletic Performance in Young Female Road Cyclists Based on Aerobic Fitness and Hematological Variables

Dariusz Sitkowski, Jadwiga Malczewska-Lenczowska, Ryszard Zdanowicz, Michał Starczewski, Andrzej Pokrywka, Piotr Żmijewski, and Raphael Faiss

Purpose: This study aimed to determine whether the initial levels of aerobic fitness and hematological variables in young female road cyclists are related to their athletic performance development during their careers. Methods: Results of graded exercise tests on a cycle ergometer and total hemoglobin mass (tHb-mass) measurements were analyzed in 34 female road cyclists (age 18.6 [1.9] y). Among them, 2 groups were distinguished based on their competitive performance (Union Cycliste Internationale world ranking) over the following 8 years. Areas under the curve in receiver-operating-characteristic curves were calculated as indicators of elite-performance prediction. Results: Initial graded exercise test variables (peak power, peak oxygen uptake, and power at 4 mmol/L blood lactate) were not significantly different in elite (n = 13) versus nonelite (n = 21) riders. In contrast, elite riders had higher tHb-mass expressed either in absolute measures (664 [75] vs 596 [59] g, P = .006) or normalized to body mass (11.2 [0.8] vs 10.3 [0.7] g/kg, P = .001) and fat-free mass (14.4 [0.9] vs 13.1 [0.9] g/kg, P < .001). Absolute and relative erythrocyte volumes were significantly higher in elite subjects (P ranged from < .001 to .006). Of all the variables analyzed, the relative tHb-mass had the highest predictive ability to reach the elite level (area under the curve ranged from .82 to .85). Conclusion: Measurement of tHb-mass can be a helpful tool in talent detection to identify young female road cyclists with the potential to reach the elite level in the future.

Restricted access

Test–Retest Reliability and Usefulness of a Foot–Ankle Rebound-Jump Test for Measuring Foot–Ankle Reactive Strength in Athletes

Romain Tourillon, François Fourchet, Pascal Edouard, and Jean-Benoît Morin

Purpose: This study investigated the test–retest reliability and usefulness of the foot–ankle rebound-jump test (FARJT) for measuring foot–ankle reactive strength metrics in athletes. Methods: Thirty-six highly trained, healthy athletes (5 female; 21.5 [3.9] y; 1.80 [0.10] m; 72.7 [10.4] kg) performed 8 repeated bilateral vertical foot–ankle rebound jumps on 2 testing days. Testing days were 1 week apart, and these sessions were preceded by a familiarization session. Reactive strength metrics were calculated by dividing jump height (in meters) by contact time (in seconds) for the reactive strength index (RSI) and flight time (in seconds) by contact time (in seconds) for the reactive strength ratio (RSR). The mean of 4 jumps (excluding the first and last 2 jumps) on each testing session were considered for RSI and RSR reliability and usefulness analysis. Results: We found a high reliability of the FARJT for RSI (intraclass correlation coefficient [ICC] > .90 and coefficient of variation [CV] = 12%) and RSR (ICC ≥ .90 and CV = 8%). Regarding their usefulness, both RSI and RSR were rated as “marginal” in detecting the smallest worthwhile change (typical error > smallest worthwhile change) and “good” in detecting a moderate change in performance. Conclusions: The results showed that a FARJT is a highly reliable test for measuring foot–ankle reactive strength in athletes and useful for quantifying changes, for example, following a training block. However, its usefulness as an accurate daily or weekly monitoring tool in practice is questionable.

Restricted access

Can We Just Play? Internal Validity of Assessing Physiological State With a Semistandardized Kicking Drill in Professional Australian Football

Adriano Arguedas-Soley, Tzlil Shushan, Andrew Murphy, Nicholas Poulos, Ric Lovell, and Dean Norris

Purpose: To examine associations between exercise heart rate (HRex) during a continuous-fixed submaximal fitness test (CF-SMFT) and an intermittent-variable protocol (semistandardized kicking drill [SSD]) in Australian Football athletes, controlling for external intensities, within-session scheduling, and environmental conditions. Methods: Forty-four professional male Australian Football athletes (22.8 [8.0] y) were monitored over 10 sessions involving a 3-minute CF-SMFT (12 km·h−1) as the first activity and a SSD administered 35.7 (8.0) minutes after the CF-SMFT. Initial heart rate and HRex were collected, with external intensities measured as average velocity (in meters per minute) and average acceleration–deceleration (in meters per second squared). Environmental conditions were sampled. A penalized hierarchical linear mixed model was tuned for a Bayesian information criterion minima using a 10-fold cross-validation, with out-of-sample prediction accuracy assessed via root-mean-squared error. Results: SSD average acceleration–deceleration, initial heart rate, temperature, and ground hardness were significant moderators in the tuned model. When model covariates were held constant, a 1%-point change in SSD HRex associated with a 0.4%-point change in CF-SMFT HRex (95% CI, 0.3–0.5). The tuned model predicted CF-SMFT HRex with an average root-mean-squared error of 2.64 (0.57) over the 10-fold cross-validation, with 74% and 86% of out-of-sample predictions falling within 2.7%-points and 3.7%-points, respectively, from observed values, representing the lower and upper limits for detecting meaningful changes in HRex according to the documented typical error. Conclusions: Our findings support the use of an SSD to monitor physiological state in Australian Football athletes, despite varied scheduling within session. Model predictions of CF-SMFT HRex from SSD HRex closely aligned with observed values, considering measurement imprecision.

Free access

Introducing IJSPP’s First Reviewer Incentive: A Submission-Fee Waiver

Dionne A. Noordhof and Øyvind Sandbakk

Restricted access

Volume 19 (2024): Issue 7 (Jul 2024)