Browse

You are looking at 71 - 80 of 5,516 items for :

  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
  • Refine by Access: All Content x
Clear All
Restricted access

Amanda Young, Seán Healy, Lisa Silliman-French, and Ali Brian

To inform the development of scalable and sustainable fundamental motor skill interventions for children with Down syndrome, this study examined the feasibility and preliminary effectiveness of Project Skill Intervention Implemented by Parents (Project SKIP), a web-based, parent-mediated intervention intended to improve ball skills among children with Down syndrome. Twenty-four families enrolled in the study (including 13 boys and 11 girls; M age = 4.92). Fourteen children were assigned to an experimental group and participated in the 6-week intervention, and 10 children served as the inactive comparison group. The Test of Gross Motor Development-3 was administered preintervention and postintervention. In addition, parents of children in the experimental group completed a postintervention survey to assess their perceptions of Project SKIP. Following the intervention, there was a significant improvement in ball skills (p = .023, d = 0.86) for children in the experimental group, whereas the comparison group did not show significant improvement. Moreover, parents perceived Project SKIP to be feasible and effective; all parents reported being satisfied with their overall experience in the program, and 11 parents indicated that their child’s fundamental motor skills were positively influenced by the intervention. Engagement was high, with the majority of parents (n = 8, 57%) interacting with Project SKIP content three to four times a week.

Restricted access

Benjamin A. McKay, Jace A. Delaney, Andrew Simpkin, Theresa Larkin, Andrew Murray, Charles R. Pedlar, Nathan A. Lewis, and John A. Sampson

Purpose: To assess associations between a free oxygen radical test (FORT), free oxygen radical defense test (FORD), oxidative stress index, urinary cortisol, countermovement jump (CMJ), and subjective wellness in American college football. Methods: Twenty-three male student athlete American college football players were assessed over 10 weeks: off-season conditioning (3 wk), preseason camp (4 wk), and in season (3 wk). Assessments included a once-weekly FORT and FORD blood sample, urinary cortisol sample, CMJ assessment including flight time, reactive strength index modified and concentric impulse, and a daily subjective wellness questionnaire. Linear mixed models analyzed the effect of a 2 within-subject SD change in the predictor variable on the dependent variable. The effects were interpreted using magnitude-based inference and are presented as standardized effect size (ES) ± 90% confidence intervals. Results: Small negative associations were observed between FORT–flight time, FORT–fatigue, FORT–soreness (ES range = −0.30 to −0.48), FORD–sleep (ES = 0.42 ± 0.29), and oxidative stress index soreness (ES = 0.56 ± 0.29). Small positive associations were observed between FORT–cortisol (ES = 0.36 ± 0.35), FORD–flight time, FORD reactive strength index modified and FORD–soreness (0.37–0.41), oxidative stress index concentric impulse (ES = 0.37 ± 0.28), and with soreness–concentric impulse, soreness–flight time, and soreness reactive strength index modified (0.33–0.59). Moderate positive associations were observed between cortisol–concentric impulse and cortisol–sleep (0.57–0.60). Conclusion:FORT/FORD was associated with CMJ variables and subjective wellness. Greater amounts of subjective soreness were associated with decreased CMJ performance, increased FORT and cortisol, and decreased FORD.

Restricted access

Adam Field, Liam D. Harper, Bryna C.R. Chrismas, Peter M. Fowler, Alan McCall, Darren J. Paul, Karim Chamari, and Lee Taylor

Purpose: To survey soccer practitioners’ recovery strategy: (1) use, (2) perceived effectiveness, and (3) factors influencing their implementation in professional soccer. Methods: A cross-sectional convenience sample of professional soccer club/confederation practitioners completed a web-based survey (April to July 2020). Pearson chi-square and Fisher exact tests with Cramer V (φ − c) assessed relationships and their strength, respectively, between the perceived effectiveness and frequency of strategy use. Results: A total of 80 soccer practitioners (13 countries) completed the survey. The 3 most important recovery objectives were “alleviating muscle damage/fatigue,” “minimizing injury risk,” and “performance optimization.” The most frequently used strategies were active recovery, structured recovery day, extra rest day, massage, cold-water therapy, and carbohydrate provision (predominantly on match day and match day + 1). Relationships were identified between perceived effectiveness and frequency of strategy use for sleep medication (P < .001, φ − c = 0.48), carbohydrate provision (P = .007, φ − c = 0.60), protein provision (P = .007, φ − c = 0.63), an extra rest day (P < .001, φ − c = 0.56), and a structured recovery day (P = .049, φ − c = 0.50). Conclusions: The study demonstrates that professional soccer practitioners have a range of objectives geared toward enhancing player recovery. A disconnect is apparent between the perceived effectiveness of many recovery strategies and their frequency of use in an applied setting. Novel data indicate that strategies are most frequently employed around match day. Challenges to strategy adoption are mainly competing disciplinary interests and resource limitations. Researchers and practitioners should liaise to ensure that the complexities involved with operating in an applied environment are elucidated and apposite study designs are adopted, in turn, facilitating the use of practically effective and compatible recovery modalities.

Restricted access

Julian Alcazar, Pedro J. Cornejo-Daza, Juan Sánchez-Valdepeñas, Luis M. Alegre, and Fernando Pareja-Blanco

Purpose: This study aimed to compare the adaptations provoked by various velocity loss (VL) thresholds used in resistance training on the squat force–velocity (F–V) relationship. Methods: Sixty-four resistance-trained young men were randomly assigned to one of four 8-week resistance training programs (all 70%–85% 1-repetition maximum) using different VL thresholds (VL0 = 0%, VL10 = 10%, VL20 = 20%, and VL40 = 40%) in the squat exercise. The F–V relationship was assessed under unloaded and loaded conditions in squat. Linear and hyperbolic (Hill) F–V equations were used to calculate force at zero velocity (F 0), velocity at zero force (V 0), maximum muscle power (P max), and force produced at mean velocities ranging from 0.0 to 2.0 m·s−1. Changes in parameters derived from the F–V relationship were compared among groups using linear mixed models. Results: Linear equations showed increases in F 0 (120.7 N [89.4 to 152.1]) and P max (76.2 W [45.3 to 107.2]) and no changes in V 0 (−0.02 m·s−1 [−0.11 to 0.06]) regardless of VL. Hyperbolic equations depicted increases in F 0 (120.7 N [89.4 to 152.1]), V 0 (1.13 m·s−1 [0.78 to 1.48]), and P max (198.5 W [160.5 to 236.6]) with changes in V 0 being greater in VL0 and VL10 versus VL40 (both P < .001). All groups similarly improved force at 0.0 to 2.0 m·s−1 (all P < .001), although in general, effect sizes were greater in VL10 and VL20 versus VL0 and VL40 at velocities ≤0.5 m·s−1. Conclusions: All groups improved linear and hyperbolic F 0 and P max and hyperbolic V 0 (except VL40). The dose–response relationship exhibited an inverted U-shape pattern at velocities ≤0.5 m·s−1 with VL10 and VL20 showing the greatest standardized changes.

Restricted access

Isabella Russo, Paul A. Della Gatta, Andrew Garnham, Judi Porter, Louise M. Burke, and Ricardo J.S. Costa

Purpose: This study aimed to determine the effects of an acute “train-low” nutritional protocol on markers of recovery optimization compared to standard recovery nutrition protocol. Methods: After completing a 2-hour high-intensity interval running protocol, 8 male endurance athletes consumed a standard dairy milk recovery beverage (CHO; 1.2 g/kg body mass [BM] of carbohydrate and 0.4 g/kg BM of protein) and a low-carbohydrate (L-CHO; isovolumetric with 0.35 g/kg BM of carbohydrate and 0.5 g/kg BM of protein) dairy milk beverage in a double-blind randomized crossover design. Venous blood and breath samples, nude BM, body water, and gastrointestinal symptom measurements were collected preexercise and during recovery. Muscle biopsy was performed at 0 hour and 2 hours of recovery. Participants returned to the laboratory the following morning to measure energy substrate oxidation and perform a 1-hour distance test. Results: The exercise protocol resulted in depletion of muscle glycogen stores (250 mmol/kg dry weight) and mild body-water losses (BM loss = 1.8%). Neither recovery beverage replenished muscle glycogen stores (279 mmol/kg dry weight) or prevented a decrease in bacterially stimulated neutrophil function (−21%). Both recovery beverages increased phosphorylation of mTORSer2448 (main effect of time = P < .001) and returned hydration status to baseline. A greater fold increase in p-GSK-3βSer9/total-GSK-3β occurred on CHO (P = .012). Blood glucose (P = .005) and insulin (P = .012) responses were significantly greater on CHO (618 mmol/L per 2 h and 3507 μIU/mL per 2 h, respectively) compared to L-CHO (559 mmol/L per 2 h and 1147 μIU/mL per 2 h, respectively). Rates of total fat oxidation were greater on CHO, but performance was not affected. Conclusion: A lower-carbohydrate recovery beverage consumed after exercise in a “train-low” nutritional protocol does not negatively impact recovery optimization outcomes.

Restricted access

Tim J. Mosey and Lachlan J.G. Mitchell

Objectives: The purpose of this study was to document the longitudinal strength and power characteristic changes and race performance changes of a skeleton athlete. Method: Longitudinal strength and power changes were assessed with strength and power diagnostic testing over a 9-year period. Trends over 9 years for relative strength were analyzed using a linear model. Push-start time was recorded across multiple tracks. Trends over 9 years for start performance at each track were assessed using a mixed-effects linear model to account for the impact of different tracks. Lower-body strength and power changes were assessed via a 1-repetition-maximum squat and a body-weight countermovement jump. The relationship between strength and power changes was assessed over time. The relationship between strength changes and start performance was determined by assessing the fixed effect of relative strength changes on push-start time. Results: Relative lower-body strength ranged from 1.6 kg per body weight to 1.9 kg per body weight and showed a significant mean improvement of 0.05 kg per body weight per year (R 2 = .71, P < .01). A negative correlation (R 2 = .79) between relative strength changes and push-start performance across multiple tracks was found. The mixed-effects model indicated that push-start time improved significantly year to year (0.02 s; P < .001; R 2 = .74) when controlling for the effect of track. Conclusions: The longitudinal analysis of push-start time and the associations with changes in strength suggest that training this quality can have a positive effect on push-start performance.

Restricted access

Even Brøndbo Dahl, Eivind Øygard, Gøran Paulsen, Bjarne Rud, and Thomas Losnegard

Purpose: Preconditioning exercise is a widely used strategy believed to enhance performance later the same day. The authors examined the influence of preconditioning exercises 6 hours prior to a time-to-exhaustion (TTE) test during treadmill running. Methods: Ten male competitive runners (age = 26 [3] y, height = 184 [8] cm, weight = 73 [9] kg, maximum oxygen consumption = 72 [7] mL·kg−1·min−1) did a preconditioning session of running (RUN) or resistance exercise (RES) or no morning exercise (NoEx) in a randomized order, separated by >72 hours. The RUN consisted of 15 minutes of low-intensity running and 4 × 15 seconds at race pace (21–24 km·h−1) on a treadmill; RES involved 5 minutes of low-intensity running and 2 × 3 repetitions of isokinetic 1-leg shallow squats with maximal mobilization. Following a 6-hour break, electrically evoked force (m. vastus medialis), countermovement jump, running economy, and a TTE of approximately 2 minutes were examined. Results: Relative to NoEx, no difference was seen for RUN or RES in TTE (mean ± 95% CI: −1.3% ± 3.4% and −0.5% ± 6.0%) or running economy (0.2% ± 1.6% and 1.9% ± 2.7%; all Ps > .05). Jump height was not different for the RUN condition (1.0% ± 2.7%]) but tended to be higher in RES than in the NoEx condition (1.5% ± 1.6%, P = .07). The electrically evoked force tended to reveal low-frequency fatigue (reduced 20:50-Hz peak force ratio) only after RES compared to NoEx (−4.5% ± 4.6%, P = .06). Conclusion: The RUN or RES 6 hours prior to approximately 2 minutes of TTE running test did not improve performance in competitive runners.

Restricted access

Kolbjørn Lindberg, Ingrid Eythorsdottir, Paul Solberg, Øyvind Gløersen, Olivier Seynnes, Thomas Bjørnsen, and Gøran Paulsen

Purpose: The aim of this study was to examine the concurrent validity of force–velocity (FV) variables assessed across 5 Keiser leg press devices. Methods: A linear encoder and 2 independent force plates (MuscleLab devices) were mounted on each of the 5 leg press devices. A total of 997 leg press executions, covering a wide range of forces and velocities, were performed by 14 participants (29 [7] y, 181 [5] cm, 82 [8] kg) across the 5 devices. Average and peak force, velocity, and power values were collected simultaneously from the Keiser and MuscleLab devices for each repetition. Individual FV profiles were fitted to each participant from peak and average force and velocity measurements. Theoretical maximal force, velocity, and power were deduced from the FV relationship. Results: Average and peak force and velocity had a coefficient of variation of 1.5% to 8.6%, near-perfect correlations (.994–.999), and a systematic bias of 0.7% to 7.1% when compared with reference measurements. Average and peak power showed larger coefficient of variations (11.6% and 17.2%), despite excellent correlations (.977 and .952), and trivial to small biases (3.9% and 8.4%). Extrapolated FV variables showed near-perfect correlations (.983–.997) with trivial to small biases (1.4%–11.2%) and a coefficient of variation of 1.4% to 5.9%. Conclusions: The Keiser leg press device can obtain valid measurements over a wide range of forces and velocities across different devices. To accurately measure power, theoretical maximal power calculated from the FV profile is recommended over average and peak power values from single repetitions, due to the lower random error observed for theoretical maximal power.

Restricted access

Mark J. Kilgallon, Michael J. Johnston, Liam P. Kilduff, and Mark L. Watsford

Purpose: To compare resistance training using a velocity loss threshold with training to repetition failure on upper-body strength parameters in professional Australian footballers. Methods: A total of 26 professional Australian footballers (23.9 [4.2] y, 189.9 [7.8] cm, 88.2 [8.8] kg) tested 1-repetition-maximum strength (FPmax) and mean barbell velocity at 85% of 1-repetition maximum on floor press (FPvel). They were then assigned to 2 training groups: 20% velocity loss threshold training (VL; n = 12, maximum-effort lift velocity) or training to repetition failure (TF; n = 14, self-selected lift velocity). Subjects trained twice per week for 3 weeks before being reassessed on FPmax and FPvel. Training volume (total repetitions) was recorded for all training sessions. No differences were present between groups on any pretraining measure. Results: The TF group significantly improved FPmax (105.2–110.9 kg, +5.4%), while the VL group did not (107.5–109.2 kg, +1.6%) (P > .05). Both groups significantly increased FPvel (0.38–0.46 m·s−1, +19.1% and 0.37–0.42 m·s−1, +16.7%, respectively) with no between-groups differences evident (P > .05). The TF group performed significantly more training volume (12.2 vs 6.8 repetitions per session, P > .05). Conclusions: Training to repetition failure improved FPmax, while training using a velocity loss threshold of 20% did not. Both groups demonstrated similar improvements in FPvel despite the VL group completing 45% less total training volume than the TF group. The reduction in training volume associated with implementing a 20% velocity loss threshold may negatively impact the development of upper-body maximum strength while still enhancing submaximal movement velocity.