Browse

You are looking at 71 - 80 of 4,807 items for :

  • Sport and Exercise Science/Kinesiology x
  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: All Content x
Clear All
Full access

Hiroki Obata, GeeHee Kim, Tetsuya Ogawa, Hirofumi Sekiguchi, and Kimitaka Nakazawa

Classical ballet dancing is a good model for studying the long-term activity-dependent plasticity of the central nervous system in humans, as it requires unique ankle movements to maintain ballet postures. The purpose of this study was to investigate whether postactivation depression is changed through long-term specific motor training. Eight ballet dancers and eight sedentary subjects participated in this study. The soleus Hoffmann reflexes were elicited at after the completion of a slow, passive dorsiflexion of the ankle. The results demonstrated that the depression of the soleus Hoffmann reflex (i.e., postactivation depression) was larger in classical ballet dancers than in sedentary subjects at two poststretch intervals. This suggests that the plastic change through long-term specific motor training is also expressed in postactivation depression of the soleus Hoffmann reflex. Increased postactivation depression would strengthen the supraspinal control of the plantarflexors and may contribute to fine ankle movements in classical ballet dancers.

Full access

Athanasia Smirniotou, Flora Panteli, and Apostolos Theodorou

The study examined to what extent the manipulation of hurdle height (0.76-m hurdle, low hurdle 0.50 m, and white stripe) would affect visual regulation strategies and kinematic reorganization when approaching the first hurdle. In addition, the impact of constraints as a training tool in terms of creating movement patterns functional for and representative of competitive movement models was assessed. The approach phase to the first hurdle of 13 physical education students with no previous experience in hurdling was video recorded and analyzed. Emergence of different footfall variability curves and movement coordination patterns suggests that participants interact differently with features of the performance context. Contrary to the white stripe, the hurdle height required participants to initiate regulation and distribute adjustments over a larger number of steps, and afforded the preparation for takeoff in order to clear the hurdle. In task design, manipulation of task constraints should offer valuable information regarding the dynamics of movement.

Restricted access

Daniel Viggiani and Jack P. Callaghan

Viscoelastic creep generated in the lumbar spine following sustained spine flexion may affect the relationship between tissue damage and perceived pain. Two processes supporting this altered relationship include altered neural feedback and inflammatory processes. Our purpose was to determine how low back mechanical pain sensitivity changes following seated lumbar spine flexion using pressure algometry in a repeated-measures, cross-sectional laboratory design. Thirty-eight participants underwent a 10-minute sustained seated maximal flexion exposure with a 40-minute standing recovery period. Pressure algometry assessed pressure pain thresholds and the perceived intensity and unpleasantness of fixed pressures. Accelerometers measured spine flexion angles, and electromyography measured muscular activity during flexion. The flexion exposure produced 4.4° (2.7°) of creep that persisted throughout the entire recovery period. The perception of low back stimulus unpleasantness was elevated immediately following the exposure, 20 minutes before a delayed increase in lumbar erector spinae muscle activity. Women reported the fixed pressures to be more intense than men. Sustained flexion had immediate consequences to the quality of mechanical stimulus perceived but did not alter pressure pain thresholds. Neural feedback and inflammation seemed unlikely mechanisms for this given the time and direction of pain sensitivity changes, leaving a postulated cortical influence.

Restricted access

Arthur Alves Dos Santos, James Sorce, Alexandra Schonning, and Grant Bevill

This study evaluated the performance of 6 commercially available hard hat designs—differentiated by shell design, number of suspension points, and suspension tightening system—in regard to their ability to attenuate accelerations during vertical impacts to the head. Tests were conducted with impactor materials of steel, wood, and lead shot (resembling commonly seen materials in a construction site), weighing 1.8 and 3.6 kg and dropped from 1.83 m onto a Hybrid III head/neck assembly. All hard hats appreciably reduced head acceleration to the unprotected condition. However, neither the addition of extra suspension points nor variations in suspension tightening mechanism appreciably influenced performance. Therefore, these results indicate that additional features available in current hard hat designs do not improve protective capacity as related to head acceleration metrics.

Open access

Laura Duval, Lei Zhang, Anne-Sophie Lauzé, Yu Q. Zhu, Dorothy Barthélemy, Numa Dancause, Mindy F. Levin, and Anatol G. Feldman

We tested the hypothesis that the ipsilateral corticospinal system, like the contralateral corticospinal system, controls the threshold muscle length at which wrist muscles and the stretch reflex begin to act during holding tasks. Transcranial magnetic stimulation was applied over the right primary motor cortex in 21 healthy subjects holding a smooth or coarse block between the hands. Regardless of the lifting force, motor evoked potentials in right wrist flexors were larger for the smooth block. This result was explained based on experimental evidence that motor actions are controlled by shifting spatial stretch reflex thresholds. Thus, the ipsilateral corticospinal system is involved in threshold position control by modulating facilitatory influences of hand skin afferents on motoneurons of wrist muscles during bimanual object manipulation.

Restricted access

Steven van Andel, Robin Pieper, Inge Werner, Felix Wachholz, Maurice Mohr, and Peter Federolf

Best practice in skill acquisition has been informed by motor control theories. The main aim of this study is to screen existing literature on a relatively novel theory, Optimal Feedback Control Theory (OFCT), and to assess how OFCT concepts can be applied in sports and motor learning research. Based on 51 included studies with on average a high methodological quality, we found that different types of training seem to appeal to different control processes within OFCT. The minimum intervention principle (founded in OFCT) was used in many of the reviewed studies, and further investigation might lead to further improvements in sport skill acquisition. However, considering the homogenous nature of the tasks included in the reviewed studies, these ideas and their generalizability should be tested in future studies.

Restricted access

Tanner M. Filben, Nicholas S. Pritchard, Logan E. Miller, Sarah K. Woods, Megan E. Hayden, Christopher M. Miles, Jillian E. Urban, and Joel D. Stitzel

Soccer players are regularly exposed to head impacts by intentionally heading the ball. Evidence suggests repetitive subconcussive head impacts may affect the brain, and females may be more vulnerable to brain injury than males. This study aimed to characterize head impact exposure among National Collegiate Athletic Association women’s soccer players using a previously validated mouthpiece-based sensor. Sixteen players were instrumented during 72 practices and 24 games. Head impact rate and rate of risk-weighted cumulative exposure were compared across session type and player position. Head kinematics were compared across session type, impact type, player position, impact location, and ball delivery method. Players experienced a mean (95% confidence interval) head impact rate of 0.468 (0.289 to 0.647) head impacts per hour, and exposure rates varied by session type and player position. Headers accounted for 89% of head impacts and were associated with higher linear accelerations and rotational accelerations than nonheader impacts. Headers in which the ball was delivered by a long kick had greater peak kinematics (all P < .001) than headers in which the ball was delivered by any other method. Results provide increased understanding of head impact frequency and magnitude in women’s collegiate soccer and may help inform efforts to prevent brain injury.

Restricted access

J.D. DeFreese, Daniel J. Madigan, and Henrik Gustafsson