You are looking at 71 - 80 of 4,885 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

Rumit S. Kakar, Seth Higgins, Joshua M. Tome, Natalie Knight, Zachary Finer, Zachary Doig, and Yumeng Li

The purpose of this study was to investigate normative and age-related differences in trunk and pelvis kinematics and intersegmental coordination during sagittal plane flexion–extension. Trunk and pelvis kinematics were recorded while 76 participants performed a maximal range of motion task in the sagittal plane. Cross-correlation was calculated to determine the phase lag between adjacent segment motion, and coupling angles were calculated using vector coding and classified into one of 4 coordination patterns: in-phase, antiphase, superior, and inferior phase. A 2-way mixed-model multivariate analysis of variance was used to compare lumbar spine and pelvis angular kinematics, phase lags, and cross-correlation coefficients between groups. Young participants exhibited greater trunk range of motion compared with middle-aged participants. The lumbar spine and pelvis were predominantly rotating with minimum phase lag during flexion and extension movement for both age groups, and differences in coordination between the groups were seen during hyperextension and return to upright position. In conclusion, middle-aged adults displayed lower range of motion but maintained similar movement patterns to young adults, which could be attributed to protective mechanisms. Healthy lumbar and pelvis movement patterns are important to understand and need to be quantified as a baseline, which can be used to develop rehabilitation protocols for individuals with spinal ailments.

Restricted access

Bernadette “Bernie” Compton

In recent years, some sport psychology professionals have called for research and praxis embracing social justice, intersectionality, and inclusion. This special issue in the Journal of Clinical Sport Psychology also points toward the importance of embracing social justice work within the field. In the following article, I share my journey and reflections about my experience with social justice and sport psychology. The story is deeply personal and provides examples I have found integral in my journey. Recommendations from my personal journey will be provided for sport psychology professionals interested in social justice work.

Restricted access

Erik T. Hummer, Tanner Thorsen, Joshua T. Weinhandl, Jeffrey A. Reinbolt, Harrold Cates, and Songning Zhang

Patients following unilateral total knee arthroplasty (TKA) display interlimb differences in knee joint kinetics during gait and more recently, stationary cycling. The purpose of this study was to use musculoskeletal modeling to estimate total, medial, and lateral tibiofemoral compressive forces for patients following TKA during stationary cycling. Fifteen patients of unilateral TKA, from the same surgeon, participated in cycling at 2 workrates (80 and 100 W). A knee model (OpenSim 3.2) was used to estimate total, medial, and lateral tibiofemoral compressive forces for replaced and nonreplaced limbs. A 2 × 2 (limb × workrate) and a 2 × 2 × 2 (compartment × limb × workrate) analysis of variance were run on the selected variables. Peak medial tibiofemoral compressive force was 23.5% lower for replaced compared to nonreplaced limbs (P = .004, G = 0.80). Peak medial tibiofemoral compressive force was 48.0% greater than peak lateral tibiofemoral compressive force in nonreplaced limbs (MD = 344.5 N, P < .001, G = 1.6) with no difference in replaced limbs (P = .274). Following TKA, patients have greater medial compartment loading on their nonreplaced compared to their replaced limbs and ipsilateral lateral compartment loading. This disproportionate loading may be cause for concern regarding exacerbating contralateral knee osteoarthritis.

Restricted access

Stephen Shannon, Mark Shevlin, and Gavin Breslin

Aim: A recent mental health in sport consensus statement advocates Keyes’ two continua model with an associated Mental Health Continuum (MHC) instrument to assess mental health in athletes. However, there remains statistically inconsistent usage of the MHC in athletes, so further exploration of the MHC’s psychometric factors is required. Methods: Athletes (N = 1,097) aged 32.63 (SD = 11.16) comprising 603 females (55.7%) and 478 males (44.3%), completed the 14-item MHC-Short Form, alongside validated measures of anxiety and depression. Five confirmatory factor analytic and bifactor models were developed based on extant research and theory. Results: Overall, a bifactor structure with a “general” positive mental health factor, and three specific factors (“hedonic well-being,” “social well-being,” and “psychological well-being”) fitted the data well and was deemed the superior model. Conclusion: A bifactor model of the MHC-Short Form is recommended comprising a composite score alongside specific factors of hedonic, social, and psychological well-being.

Restricted access

Leonardo S. Fortes, Maicon R. Albuquerque, Heloiana K.C. Faro, Dalton de Lima-Júnior, Maria E.C. Ferreira, and Sebastião S. Almeida

The study aimed to analyze the effect of anodal transcranial direct current stimulation (a-tDCS) over the left dorsolateral prefrontal cortex on soccer athletes’ decision making and visual search behavior. It was a single-blind, randomized, and experimental investigation. The 23 soccer athletes were pair-matched according to decision-making skill and then randomized into two groups: a-tDCS and sham. The decision making (during small-sided game and screen task) and visual search behavior were measured before and after the 8-week intervention. Only the a-tDCS group reduced response time in the decision-making screen task (p < .05). The a-tDCS group showed a higher number of fixations than sham group (p < .05) during the small-sided game. The a-tDCS group showed a lower duration of fixation than sham group (p < .05) during the small-sided game. Our results indicated that using a-tDCS over left dorsolateral prefrontal cortex changed visual search behavior and improved the response time of decision-making skill.

Restricted access

Camille Sabourin, Stéphanie Turgeon, Laura Martin, Scott Rathwell, Mark Bruner, John Cairney, and Martin Camiré

Although psychological distress has been shown to increase during adolescence, participation in organized activities may have protective effects. The present study aimed to identify whether there is a relationship between high school student-athletes’ breadth of participation in organized activities and psychological distress, using a latent class analysis. Canadian adolescent-athletes (n = 930) in Grades 11 and 12 completed an online survey that measured: (a) high school sport participation, (b) community sport participation, (c) nonsport extracurricular activities participation, and (d) psychological distress. The latent class analysis indicated that a two-class model (i.e., Class 1 = narrower breadth, low distress; Class 2 = wider breadth, moderate distress) was most appropriate. Results indicated that despite the divergent probability of organized activity participation, participants in both classes had a low to moderate probability of presenting elevated levels of psychological distress. However, levels of psychological distress were still higher than other Canadian adolescent populations, suggesting that overscheduling could be of concern. Gender and time (i.e., prior/during COVID-19 pandemic) were significant covariates in the model.

Restricted access

Tyler M. Saumur, Jacqueline Nestico, George Mochizuki, Stephen D. Perry, Avril Mansfield, and Sunita Mathur

This study aimed to determine the relationship between lower limb muscle strength and explosive force with force plate–derived timing measures of reactive stepping. Nineteen young, healthy adults responded to 6 perturbations using an anterior lean-and-release system. Foot-off, swing, and restabilization times were estimated from force plates. Peak isokinetic torque, isometric torque, and explosive force of the knee extensors/flexors and plantar/dorsiflexors were measured using isokinetic dynamometry. Correlations were run based on a priori hypotheses and corrected for the number of comparisons (Bonferroni) for each variable. Knee extensor explosive force was negatively correlated with swing time (r = −.582, P = .009). Knee flexor peak isometric torque also showed a negative association with restabilization time (r = −.459, P = .048); however, this was not statistically significant after correcting for multiple comparisons. There was no significant relationship between foot-off time and knee or plantar flexor explosive force (P > .025). These findings suggest that there may be utility to identifying specific aspects of reactive step timing when studying the relationship between muscle strength and reactive balance control. Exercise training aimed at improving falls risk should consider targeting specific aspects of muscle strength depending on specific deficits in reactive stepping.

Restricted access

Kayla M. Fewster, Jackie D. Zehr, Chad E. Gooyers, Robert J. Parkinson, and Jack P. Callaghan

Background: Recent work has demonstrated that low back pain is a common complaint following low-speed collisions. Despite frequent pain reporting, no studies involving human volunteers have been completed to examine the exposures in the lumbar spine during low-speed rear impact collisions. Methods: Twenty-four participants were recruited and a custom-built crash sled simulated rear impact collisions, with a change in velocity of 8 km/h. Randomized collisions were completed with and without lumbar support. Inverse dynamics analyses were conducted, and outputs were used to generate estimates of peak L4/L5 joint compression and shear. Results: Average (SD) peak L4/L5 compression and shear reaction forces were not significantly different without lumbar support (compression = 498.22 N [178.0 N]; shear = 302.2 N [98.5 N]) compared to with lumbar support (compression = 484.5 N [151.1 N]; shear = 291.3 N [176.8 N]). Lumbar flexion angle at the time of peak shear was 36° (12°) without and 33° (11°) with lumbar support. Conclusion: Overall, the estimated reaction forces were 14% and 30% of existing National Institute of Occupational Safety and Health occupational exposure limits for compression and shear during repeated lifting, respectively. Findings also demonstrate that, during a laboratory collision simulation, lumbar support does not significantly influence the total estimated L4/L5 joint reaction force.

Restricted access

Tal Krasovsky, Rawda Madi, Eyal Fruchter, Elias Jahjah, and Roee Holtzer

Texting while walking is an increasingly common, potentially dangerous task but its functional brain correlates have yet to be reported. Therefore, we evaluated prefrontal cortex (PFC) activation patterns during single- and dual-task texting and walking in healthy adults. Thirteen participants (29–49 years) walked under single- and dual-task conditions involving mobile phone texting or a serial-7s subtraction task, while measuring PFC activation (functional near-infrared spectroscopy) and behavioral task performance (inertial sensors, mobile application). Head lowering during texting increased PFC activation. Texting further increased PFC activation, and decreased gait performance similarly to serial-7 subtraction. Our results support the key role of executive control in texting while walking.

Restricted access

José Pedro Correia, João R. Vaz, Erik Witvrouw, and Sandro R. Freitas

Maintaining the range of motion in repetitive movement tasks is a crucial point since it directly influences the movement rate. Ensuring the movement amplitude can be reliably maintained when motor function is assessed by measuring the maximum movement rate is therefore a key consideration. However, the performed range of motion during such tasks is often not reported. This study aimed to determine whether individuals are able to maintain an intended range of motion during a knee flexion/extension maximum movement rate task in the absence of tactile and visual feedback. Twelve healthy male individuals performed knee flexion/extension at maximum speed for eight 10-s blocks in a 45° arc between 45° and 90°. The range of motion was monitored using a marker system and the movement rate was measured. The performed range of motion was not significantly different from the 45° arc during the task despite a 13.47% decrease in movement rate from the start to the end of the task. Nevertheless, there was only anecdotal evidence of no difference from 45° in most blocks, while on the second and seventh blocks, there was anecdotal evidence of differences in the Bayesian one-sample test. There was also no significant shift in the maximum flexion/extension angles throughout the task. Healthy male individuals were thus able to perform a consistent average predefined knee range of motion in a maximum movement rate task despite decreases in movement rate. This was achieved without constraint-inducing devices during the task, using only basic equipment and verbal feedback.