Browse

You are looking at 81 - 90 of 4,885 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

Justin A. Haegele, Lindsay E. Ball, Xihe Zhu, M. Ally Keene, and Lindsey A. Nowland

The purpose of this study was to examine the inclusiveness of visually impaired youths’ experiences in integrated physical education. An experiential qualitative research approach was utilized, and 22 visually impaired youth (age 12–17 years) acted as participants. Data sources included one-on-one Zoom interviews, written responses to long-answer prompts, and reflexive interview notes. Data were analyzed using a reflexive thematic analysis approach, and three themes were constructed: (a) I’m not there, so how could I: The absent person; (b) I can’t see, so I can’t do it: The incapable person; and (c) It’d be nice to feel like everyone else: The “normal” person. Participants described that feelings of inclusion were unavailable to them and that feeling, and being viewed as, absent, incapable, and (not) “normal” highlighted this unavailability.

Restricted access

Peter B. Thomsen, Jacob W. Aumeier, Chelsey A. Wilbur, Evan G. Oro, Hunter B. Carlson, and Jesse C. Christensen

Fall-related injuries are associated with muscle weakness and common during slope walking in older adults. However, no study has evaluated the relationship between muscle weakness, measured by maximal lower limb extension power, and older adults’ ability to navigate slope walking for a better understanding of fall prevention. Therefore, the purpose of this study was to investigate the association between maximal lower limb extension power and joint mechanics during slope walking. Fifteen healthy older adults were tested. Lower limb extension power was measured using the Leg Extension Power Rig. Kinematic and kinetic analysis was performed during level (0°), incline (10°), and decline (10°) slope walking. Greater maximal lower limb extension power was significantly (p < .050; Cohen’s f 2 > 0.35) associated with multiple kinetic and kinematic joint mechanic variables across stance phase of the gait cycle during level, incline, and decline walking. These findings will allow clinicians to better educate patients and develop interventions focused on fall prevention and improving functional mobility in older adults.

Restricted access

Fatemeh Zahed and Max Berniker

Reaches in experimental settings are commonly found to be straight. This straightness is robust to physical, but not visual, perturbations. Here, we question whether typical visual feedback contributes to this finding by implicitly promoting straight movements. To do so, we replaced the conventional feedback depicting the hand’s location with feedback depicting the limb’s orientation. Reaching movements with three different visual feedback conditions were examined. In the final condition, the subject’s arm was depicted as two rotating links, and targets were depicted as two links indicating a desired arm posture. We found that by replacing standard cursor feedback, reaches became curved and arched to the target. Our findings further demonstrate that depicted feedback influences movements, and feedback depicting the limb, in particular, may elicit curved reaches.

Restricted access

Jarrod Blinch, John R. Harry, Melanie A. Hart, and Denis Cousineau

The goal of the current study was to measure the processing demands on the stages of information processing with internal and external foci of attention. Participants completed simple and two-choice reaction time tasks with internal and external foci of attention. Donders’ subtraction method was used to isolate the cumulative duration of stages unique to simple and choice reaction time tasks. Mean reaction time was comparable with internal and external foci of attention in simple and two-choice reaction time tasks. These results suggest that processing demands were comparable with internal and external foci of attention. We hypothesize that there was not a processing advantage for an external focus in simple reaction time because the required movements had low movement complexity.

Restricted access

Shuaijie Wang, Yi-Chung (Clive) Pai, and Tanvi Bhatt

Older adults could experience split falls or feet-forward falls following an unexpected slip in gait due to different neuromuscular vulnerabilities, and different intervention strategies would be required for each type of faller. Thus, this study aimed to investigate the key factors affecting the fall types based on regular gait pattern. A total of 105 healthy older adults who experienced a laboratory-induced slip and fall were included. Their natural walking trial immediately prior to the novel slip trial was analyzed. To identify the factors related to fall type, gait characteristics and demographic factors were determined using univariate logistic regression, and then stepwise logistic regression was conducted to assess the slip-induced fall type based on these factors. The best fall-type prediction model involves gait speed and recovery foot angular velocity, which could predict 70.5% of feet-forward falls and 86.9% of split falls. Body mass index was also a crucial fall-type prediction with an overall prediction accuracy of 70.5%. Along with gait parameters, 84.1% of feet-forward falls and 78.7% of split falls could be predicted. The findings in this study revealed the determinators related to fall types, which enhances our knowledge of the mechanism associated to slip-induced fall and would be helpful for the development of tailored interventions for slip-induced fall prevention.

Restricted access

Gabriella M. Milef, Logan E. Miller, Daniella M. DiGuglielmo, Tanner D. Payne, Tanner M. Filben, Jillian E. Urban, and Joel D. Stitzel

Head impact exposure is often quantified using peak resultant kinematics. While kinematics describes the inertial response of the brain to impact, they do not fully capture the dynamic brain response. Strain, a measure of the tissue-level response of the brain, may be a better predictor of injury. In this study, kinematic and strain metrics were compared to contact characteristics in youth football. Players on 2 opposing teams were instrumented with head impact sensors to record impact kinematics. Video was collected to identify contact scenarios involving opposing instrumented players (ie, paired contact scenarios) and code contact characteristics (eg, player role, impact location). A previously validated, high-resolution brain finite element model, the atlas-based brain model, was used to simulate head impacts and calculate strain metrics. Fifty-two paired contact scenarios (n = 105 impacts) were evaluated. Lighter players tended to have greater biomechanical metrics compared to heavier players. Impacts to the top of the helmet were associated with lower strain metrics. Overall, strain was better correlated with rotational kinematics, suggesting these metrics may be better predictors of the tissue-level brain response than linear kinematics. Understanding the effect of contact characteristics on brain strain will inform future efforts to improve sport safety.

Restricted access

Jorge E. Morais, Tiago M. Barbosa, Henrique P. Neiva, Mario C. Marques, and Daniel A. Marinho

The aim of this study was to classify and identify young swimmers’ performance, and biomechanical determinant factors, and understand if both sexes can be clustered together. Thirty-eight swimmers of national level (22 boys: 15.92 ± 0.75 years and 16 girls: 14.99 ± 1.06 years) were assessed. Performance (swim speed at front crawl stroke) and a set of kinematic, efficiency, kinetic, and hydrodynamic variables were measured. Variables related to kinetics and efficiency (p < .001) were the ones that better discriminated the clusters. All three clusters included girls. Based on the interaction of these determinant factors, there are girls who can train together with boys. These findings indicate that not understanding the importance of the interplay between such determinants may lead to performance suppression in girls.

Restricted access

Brynn Adamson, Matthew Adamson, Dominique Kinnett-Hopkins, and Robert Motl

Exercise is becoming more integrated into the management of multiple sclerosis (MS) and is promoted to manage impairments and symptoms. Whereas extensive research outlines factors impacting participation, less is known regarding how medicalized exercise promotion might impact views of exercise and self. We conducted a secondary data analysis to understand how medicalized exercise-promotion paradigms impact the meaning and roles of exercise among those with MS. Twenty-two interviews were selected for reanalysis with an interpretative phenomenological analysis methodology and a critical disability studies lens. Three themes were identified: Constant Vigilance (worry about exercise), Productivity and Social Engagement (exercise to feel productive, engage socially, and enhance self-worth), and Exercise as Medicine/Self-Care (exercise to manage MS, relax, improve mental well-being, prevent/reverse disability, and stay healthy). This research underscores that exercise occupies many contradictory roles reflecting a medicalized exercise-promotion paradigm for those with MS, and this should inform exercise promotion practices.

Restricted access

ShiYao Wu and Li Sui

In this study, event-related potentials and neurobehavioral measurements were used to investigate the effects of discontinuous short-term fine motor imagery (MI), a paradigm of finger sequential MI training interspersed with no-MI that occurs within 1 hr, on fine finger motor execution. The event-related potentials revealed that there were significant differences in the P300 between the fine MI training and the no-MI training. There were also significant changes in the P200 between fine motor execution of familiar tasks after MI training and fine motor execution of unfamiliar tasks without MI training. Neurobehavioral data revealed that the fine MI enhanced fine motor execution. These findings may suggest that discontinuous short-term fine MI could be useful in improving fine motor skills.