You are looking at 81 - 90 of 1,844 items for :

  • Journal of Applied Biomechanics x
  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: All Content x
Clear All
Restricted access

A Minimal Sensor Inertial Measurement Unit System Is Replicable and Capable of Estimating Bilateral Lower-Limb Kinematics in a Stationary Bodyweight Squat and a Countermovement Jump

AuraLea Fain, Benjamin Hindle, Jordan Andersen, Bradley C. Nindl, Matthew B. Bird, Joel T. Fuller, Jodie A. Wills, and Tim L.A. Doyle

This study aimed to validate a 7-sensor inertial measurement unit system against optical motion capture to estimate bilateral lower-limb kinematics. Hip, knee, and ankle sagittal plane peak angles and range of motion (ROM) were compared during bodyweight squats and countermovement jumps in 18 participants. In the bodyweight squats, left peak hip flexion (intraclass correlation coefficient [ICC] = .51), knee extension (ICC = .68) and ankle plantar flexion (ICC = .55), and hip (ICC = .63) and knee (ICC = .52) ROM had moderate agreement, and right knee ROM had good agreement (ICC = .77). Relatively higher agreement was observed in the countermovement jumps compared to the bodyweight squats, moderate to good agreement in right peak knee flexion (ICC = .73), and right (ICC = .75) and left (ICC = .83) knee ROM. Moderate agreement was observed for right ankle plantar flexion (ICC = .63) and ROM (ICC = .51). Moderate agreement (ICC > .50) was observed in all variables in the left limb except hip extension, knee flexion, and dorsiflexion. In general, there was poor agreement for peak flexion angles, and at least moderate agreement for joint ROM. Future work will aim to optimize methodologies to increase usability and confidence in data interpretation by minimizing variance in system-based differences and may also benefit from expanding planes of movement.

Restricted access

Left–Right Differential Erector Spinae Muscles Activation in Prone and Quadruped Positions

Nader Farahpour, Mahboube Alemzadeh, Mehri Mohammadi, Mohammadreza Rezaie, and Paul Allard

Left–right differential erector spinae (ES) muscle strengthening is required to correct ES muscle imbalances. The objective was to test the effect of 6 body positions on the differential activation of the ES muscles. In 14 able-bodied young women, using a surface electromyography system, the bilateral ES muscles activity at the third lumbar (ESL3) and the 10th (EST10) and 6th (EST6) thoracic vertebral levels was measured with the contralateral arm and leg lifted in the prone and quadruped conditions and with a single arm lifted in the quadruped position. Results showed that the activity of the ESL3 was symmetrical (P > .05) and significantly smaller than that of the thoracic ES muscles in all body positions (P < .01). The EST10 and EST6 were differentially activated in all tests (P < .001). Besides, the differential activation was higher in the contralateral-arm and -leg lift in the quadruped position than in the other positions. In conclusion, contralateral-arm and -leg lift and single-arm lift in the quadruped and prone positions are capable of differentially activating the ES muscles on one side more than the other side. Further studies are recommended to examine the effectiveness of these exercises on the correction of ES muscle imbalances in clinical populations.

Restricted access

Pelvic Rotation Is Associated With Asymmetry in the Knee Extensor Moment During Double-Leg Squatting After Anterior Cruciate Ligament Reconstruction

Tomoya Ishida, Mina Samukawa, Yuta Koshino, Takumi Ino, Satoshi Kasahara, and Harukazu Tohyama

Asymmetry in knee extensor moment during double-leg squatting was observed after anterior cruciate ligament reconstruction, even after the completion of the rehabilitation program for return to sports. The purpose of this study was to clarify the association between asymmetry in the knee extensor moment and pelvic rotation angle during double-leg squatting after anterior cruciate ligament reconstruction. Twenty-four participants performed double-leg squatting. Kinetics and kinematics during squatting were analyzed using a 3-dimensional motion analysis system with 2 force plates. The limb symmetry index of knee extensor moment was predicted by the pelvic rotation angle (R 2 = .376, P = .001). In addition, the pelvic rotation and the limb symmetry index of the vertical ground reaction force independently explained the limb symmetry index of the knee extensor moment (R 2 = .635, P < .001, β of pelvic rotation = −0.489, β of vertical ground reaction force = 0.524). Pelvic rotation toward the involved limb was associated with a smaller knee extensor moment in the involved limb than in the uninvolved limb. The assessment of pelvic rotation would be useful for partially predicting asymmetry in the knee extensor moment during double-leg squatting. Minimizing pelvic rotation may improve the asymmetry in the knee extensor moment during double-leg squatting after anterior cruciate ligament reconstruction.

Restricted access

Prelanding Knee Kinematics and Landing Kinetics During Single-Leg and Double-Leg Landings in Male and Female Recreational Athletes

Ling Li, Yu Song, Maddy Jenkins, and Boyi Dai

Biomechanical behavior prior to landing likely contributes to anterior cruciate ligament (ACL) injuries during jump-landing tasks. This study examined prelanding knee kinematics and landing ground reaction forces (GRFs) during single-leg and double-leg landings in males and females. Participants performed landings with the dominant leg or both legs while kinematic and GRF data were collected. Single-leg landings demonstrated less time between prelanding minimal knee flexion and initial ground contact, decreased prelanding and early-landing knee flexion angles and velocities, and increased peak vertical and posterior GRFs compared with double-leg landings. Increased prelanding knee flexion velocities and knee flexion excursion correlated with decreased peak posterior GRFs during both double-leg and single-leg landings. No significant differences were observed between males and females. Prelanding knee kinematics may contribute to the increased risk of ACL injuries in single-leg landings compared with double-leg landings. Future studies are encouraged to incorporate prelanding knee mechanics to understand ACL injury mechanisms and predict future ACL injury risks. Studies of the feasibility of increasing prelanding knee flexion are needed to understand the potential role of prelanding kinematics in decreasing ACL injury risk.

Restricted access

A Statistical Parametric Mapping Analysis Approach for the Evaluation of a Passive Back Support Exoskeleton on Mechanical Loading During a Simulated Patient Transfer Task

Unai Latorre Erezuma, Maialen Zelaia Amilibia, Ander Espin Elorza, Camilo Cortés, Jon Irazusta, and Ana Rodriguez-Larrad

This study assessed the effectiveness of a passive back support exoskeleton during a mechanical loading task. Fifteen healthy participants performed a simulated patient transfer task while wearing the Laevo (version 2.5) passive back support exoskeleton. Collected metrics encompassed L5-S1 joint moments, back and abdominal muscle activity, lower body and back kinematics, center of mass displacement, and movement smoothness. A statistical parametric mapping analysis approach was used to overcome limitations from discretization of continuous data. The exoskeleton reduced L5-S1 joint moments during trunk flexion, but wearing the device restricted L5-S1 joint flexion when flexing the trunk as well as hip and knee extension, preventing participants from standing fully upright. Moreover, wearing the device limited center of mass motion in the caudal direction and increased its motion in the anterior direction. Therefore, wearing the exoskeleton partly reduced lower back moments during the lowering phase of the patient transfer task, but there were some undesired effects such as altered joint kinematics and center of mass displacement. Statistical parametric mapping analysis was useful in determining the benefits and hindrances produced by wearing the exoskeleton while performing the simulated patient transfer task and should be utilized in further studies to inform design and appropriate usage.

Restricted access

The Effects of Increasing Trunk Flexion During Stair Ascent on the Rate and Magnitude of Achilles Tendon Force in Asymptomatic Females

Lee T. Atkins, Michael Lowrey, Sarah Reagor, Kirsten Walker, and Dhalston Cage

Research indicates that increasing trunk flexion may optimize patellofemoral joint loading. However, this postural change could cause an excessive Achilles tendon force (ATF) and injury risk during movement. This study aimed to examine the effects of increasing trunk flexion during stair ascent on ATF, ankle biomechanics, and vertical ground reaction force in females. Twenty asymptomatic females (age: 23.4 [2.5] y; height: 1.6 [0.8] m; mass: 63.0 [12.2] kg) ascended stairs using their self-selected and flexed trunk postures. Compared with the self-selected trunk condition, decreases were observed for peak ATF (mean differences [MD] = 0.14 N/kg; 95% confidence interval [CI], 0.06 to 0.23; Cohen d = −1.2; P = .003), average rate of ATF development (MD = 0.25 N/kg/s; 95% CI, 0.07 to 0.43; Cohen d = −0.9; P = .010), ankle plantar flexion moment (MD = 0.08 N·m/kg; 95% CI, 0.03 to 0.13; Cohen d = −1.1; P = .005), and vertical ground reaction force (MD = 38.6 N/kg; 95% CI, 20.3 to 56.90; Cohen d = −1.8; P < .001). Increasing trunk flexion did not increase ATF. Instead, this postural change was associated with a decreased ATF rate and magnitude and may benefit individuals with painful Achilles tendinopathy.

Restricted access

The Effect of Foot Position and Lean Mass on Jumping and Landing Mechanics in Collegiate Dancers

Chris J. Alfiero, Ann F. Brown, Youngmin Chun, Alexandra Holmes, and Joshua P. Bailey

The purpose of this study was to investigate the effects of foot positioning and lean mass on jumping and landing mechanics in collegiate dancers. Thirteen dancers performed 3 unilateral and bilateral vertical jumps with feet in neutral and turnout positions. Dual-energy x-ray absorptiometry scans, jump height, vertical stiffness, and joint stiffness were assessed for relationships between foot positions. Jump heights were greater in right compared with left limb (P = .029) and neutral compared with turnout (P = .020) during unilateral jumping. In unilateral landing, knee stiffness was greater in turnout compared with neutral (P = .004) during the loading phase. Jump height (P < .001) was significantly increased, and vertical stiffness (P = .003) was significantly decreased during bilateral jumping in neutral compared with turnout. Significantly increased hip stiffness during the attenuation phase was observed in neutral compared with turnout (P = .006). Left-limb lean mass was significantly less than the right limb (P < .05). Adjustments for bilateral jumping were focused on hip stiffness, whereas there was a slight shift to knee strategy for unilateral jump.

Restricted access

Volume 38 (2022): Issue 6 (Dec 2022)

Restricted access

Alterations in the Functional Knee Alignment Are Not an Effective Strategy to Modify the Mediolateral Distribution of Knee Forces During Closed Kinetic Chain Exercises

Will Bosch, Amir Esrafilian, Paavo Vartiainen, Jari Arokoski, Rami K. Korhonen, and Lauri Stenroth

Pain felt while performing rehabilitation exercises could be a reason for the low adherence of knee osteoarthritis patients to physical rehabilitation. Reducing compressive forces on the most affected knee regions may help to mitigate the pain. Knee frontal plane positioning with respect to pelvis and foot (functional knee alignment) has been shown to modify the mediolateral distribution of the tibiofemoral joint contact force in walking. Hence, different functional knee alignments could be potentially used to modify joint loading during rehabilitation exercises. The aim was to understand whether utilizing different alignments is an effective strategy to unload specific knee areas while performing rehabilitation exercises. Eight healthy volunteers performed 5 exercises with neutral, medial, and lateral knee alignment. A musculoskeletal model was modified for improved prediction of tibiofemoral contact forces and used to evaluate knee joint kinematics, moments, and contact forces. Functional knee alignment had only a small and inconsistent effect on the mediolateral distribution joint contact force. Moreover, the magnitude of tibiofemoral and patellofemoral contact forces, knee moments, and measured muscle activities was not significantly affected by the alignment. Our results suggest that altering the functional knee alignment is not an effective strategy to unload specific knee regions in physical rehabilitation.

Restricted access

Differences in Knee Extensors’ Muscle–Tendon Unit Passive Stiffness, Architecture, and Force Production in Competitive Cyclists Versus Runners

Leonardo Cesanelli, Sigitas Kamandulis, Nerijus Eimantas, and Danguole Satkunskiene

To describe the possible effects of chronic specific exercise training, the present study compared the anthropometric variables, muscle–tendon unit (MTU) architecture, passive stiffness, and force production capacity between a group of competitive cyclists and runners. Twenty-seven competitive male cyclists (n = 16) and runners (n = 11) participated. B-mode ultrasound evaluation of the vastus lateralis muscle and patellar tendon as well as passive stiffness of the knee extensors MTU were assessed. The athletes then performed a test of knee extensor maximal voluntary isometric contractions. Cyclists displayed greater thigh girths, vastus lateralis pennation angle and muscle thickness, patellar tendon cross-sectional area, and MTU passive stiffness than runners (P < .05). Knee extensor force production capacity also differed significantly, with cyclists showing greater values compared with runners (P < .05). Overall, the direct comparison of these 2 populations revealed specific differences in the MTU, conceivably related to the chronic requirements imposed through the training for the different disciplines.