You are looking at 81 - 90 of 6,352 items for :

  • Physical Education and Coaching x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

Why Should Athletes Brake Fast? Influence of Eccentric Velocity on Concentric Performance During Countermovement Jumps at Different Loads

Jose L. Hernández-Davó, Rafael Sabido, Manuel Omar-García, and Daniel Boullosa

Purpose: The aim of the present study was to analyze the effect of different eccentric tempos on eccentric kinetics and kinematics and the subsequent concentric performance when performing countermovement jumps against different loads. Methods: After 1-repetition-maximum assessment and 2 familiarization sessions, 13 well-trained participants performed, in randomized order, 12 sets (4 tempos × 3 loads) of 4 repetitions of the loaded countermovement-jump exercise. The eccentric tempos analyzed were 5 and 2 seconds, as fast as possible, and accelerated (ie, without pause between repetitions), while the loads used were 30%, 50%, and 70% of 1-repetition maximum. Several kinetic and kinematic variables during both phases were recorded by linking a linear position transducer to the barbell. Results: The eccentric work was greater in the accelerated condition despite no changes in the eccentric depth. The peak and mean propulsive velocities were greater in the as-fast-as-possible and accelerated conditions. Correlation analysis showed that, compared with the 5-second condition, the increased concentric performance in the accelerated condition was related to the difference in eccentric work performed in the last 100 milliseconds of the eccentric phase (r > .770). Conclusions: Contrary to current practices, the current study highlights the need for performing the eccentric phase of loaded countermovement jumps, a common exercise performed by athletes for both training and evaluation purposes, as fast as possible. This allows not only a greater eccentric work but also improved concentric performance.

Restricted access

Characteristics of Physical Activity Interventions for People With Visual Impairments: A Scoping Review

Soyoung Choi and JJ Pionke

This study evaluated physical activity interventions designed for individuals with visual impairments and sought to guide health intervention scientists aiming to promote physical activity in this demographic. We delved into the specifics of participants’ visual impairments, intervention features, accommodation approaches, and replicability prospects. The search spanned four databases, namely PubMed, CINAHL, SportDiscus, and Scopus, providing a wide scope and diversity of potential studies. There were no restrictions on publication years. We reviewed 13 studies, totaling 15 interventions. A consensus on visual-impairment definitions remains elusive, and the intervention dosages displayed variability. Notably, 66.7% (n = 7) integrated behavior-change techniques to amplify physical activity levels. Multiple studies employed audio descriptions as an accommodation method. While most studies provided adequate information for potential replication, detailed study protocols were frequently absent. It is essential for developed interventions to be persistently evaluated and fine-tuned to optimize results.

Restricted access

Effects of High-Intensity Inspiratory Muscle Warm-Up on High-Intensity Exercise Performance and Muscle Oxygenation

Jun Koizumi and Toshiyuki Ohya

Purpose: An inspiratory muscle warm-up (IMW) improves inspiratory muscle function, but the effects of high-intensity exercise are inconsistent. We aimed to determine the effects of high-intensity IMW on high-intensity exercise performance and muscle oxygenation. Methods: Ten healthy men (maximal oxygen uptake [ V ˙ O 2 max ] 52.2 [5.0] mL·kg–1·min–1) performed constant-load exercise to exhaustion on a cycle ergometer at V ˙ O 2 max under 2 IMW conditions: a placebo condition (PLA) and a high-intensity IMW condition (HIGH). The inspiratory loads were set at 15% and 80% of maximal inspiratory pressure, respectively. Maximal inspiratory pressure was measured before and after IMW. Oxyhemoglobin was measured in the vastus lateralis by near-infrared spectroscopy during exercise. Rating of perceived exertion (RPE) for a leg was measured after 1 and 2 minutes of exercise. Results: Exercise tolerance was significantly higher under HIGH than PLA (228 [49] s vs 218 [49] s, P = .003). Maximal inspiratory pressure was significantly increased by IMW under HIGH (from 125 [20] to 136 [25] cm H2O, P = .031). Oxyhemoglobin was significantly higher under HIGH than PLA at 80% of the total duration of exercise (P = .048). RPE for the leg was significantly lower under HIGH than PLA after 2 minutes of exercise (P = .019). Conclusions: Given that oxyhemoglobin is an index of local oxygen supply, the results of this study suggest that high-intensity IMW increases the oxygen supply to active limbs. It may also reflect a reduction in RPE in the leg. In addition, high-intensity IMW may improve exercise performance.

Restricted access

Effects of Hypoxia Severity on Muscle Oxygenation Kinetics Using Statistical Parametric Mapping During Repeated Treadmill Sprints

Clint Hansen, Franck Brocherie, Grégoire P. Millet, and Olivier Girard

Purpose: We examined the effects of increasing hypoxia severity on oxygenation kinetics in the vastus lateralis muscle during repeated treadmill sprints, using statistical parametric mapping (SPM). Methods: Ten physically active males completed 8 sprints of 5 seconds each (recovery = 25 s) on a motorized sprint treadmill in normoxia (sea level; inspired oxygen fraction = 0.21), moderate hypoxia (inspired oxygen fraction = 0.17), and severe hypoxia (SH; inspired oxygen fraction = 0.13). Continuous assessment of tissue saturation index (TSI) in the vastus lateralis muscle was conducted using near-infrared spectroscopy. Subsequently, TSI data were averaged for the sprint–recovery cycle of all sprints and compared between conditions. Results: The SPM analysis revealed no discernible difference in TSI signal amplitude between conditions during the actual 5-second sprint phase. However, during the latter portion of the 25-second recovery phase, TSI values were lower in SH compared with both sea level (from 22 to 30 s; P = .003) and moderate hypoxia (from 16 to 30 s; P = .001). The mean distance covered at sea level (22.9 [1.0] m) was greater than for both moderate hypoxia (22.5 [1.2] m; P = .045) and SH (22.3 [1.4] m; P = .043). Conclusions: The application of SPM demonstrated that only SH reduced muscle oxygenation levels during the late portion of the passive (recovery) phase and not the active (sprint) phase during repeated treadmill sprints. These findings underscore the usefulness of SPM for assessing muscle oxygenation differences due to hypoxic exposure and the importance of the duration of the between-sprints recovery period.

Restricted access

Pharmacokinetic Profile of Caffeine and Its Two Main Metabolites in Dried Blood Spots After Five Different Oral Caffeine Administration Forms—A Randomized Crossover Study

Chiara Tuma, Andreas Thomas, Lasse Trede, Hans Braun, and Mario Thevis

Caffeine is an ergogenic substance that is consumed globally in many forms. The use of buccally absorbable formulations instead of gastrointestinal uptake has become increasingly popular over the years, especially when accelerated absorption with minimal gastrointestinal stress is desired. This study investigated the impact of five different formulations and administration routes of caffeine on the whole blood concentrations of caffeine, paraxanthine, and theobromine: caffeinated capsules, tablets, shots, pouches, and chewing gums. A uniform dose of caffeine (200 mg) was administered to 16 healthy recreational athletes (26.0 ± 2.1 years) using a randomized crossover design. Samples were taken in the form of dried blood spots at 16 different time points in a 2-hr timeframe after drug administration. The samples were analyzed using a validated liquid chromatography–tandem mass spectrometry method. The results for caffeine showed no significant differences in the overall bioavailability (area under the concentration–time curve), maximal concentration, and time to maximum concentration. However, when analyzing the bioavailability of caffeine in the first 5, 10, and 15 min, the liquid caffeine formulation was superior to other administered forms (p < .05). This indicates that caffeine solubility has a major influence on its absorption rate. In sports, the rate of caffeine absorption must be considered, not only when ingesting anhydrous caffeine, but also when choosing buccal absorption. These findings imply that general guidelines for ergogenic caffeine use should consider the formulation used and, accordingly, the corresponding route of absorption.

Restricted access

Sex Differences in Hydration Biomarkers and Test–Retest Reliability Following Passive Dehydration

Colin S. Doherty, Lauren V. Fortington, and Oliver R. Barley

This study investigated (a) differences between males and females for changes in serum, tear, and urine osmolality, hematocrit, and urine specific gravity following acute passive dehydration and (b) assessed the reliability of these biomarkers separately for each sex. Fifteen males (age: 26.3 ± 3.5 years, body mass: 76 ± 7 kg) and 15 females (age: 28.8 ± 6.4 years, body mass: 63 ± 7 kg) completed a sauna protocol twice (5–28 days apart), aiming for 4% body mass loss (BML). Urine, blood, and tear markers were collected pre- and postdehydration, and change scores were calculated. Male BML was significantly greater than that of females in Trial 1 (3.53% ± 0.55% vs. 2.53% ± 0.43%, p < .001) and Trial 2 (3.36% ± 0.66% vs. 2.53% ± 0.44%, p = .01). Despite significant differences in BML, change in hematocrit was the only change marker that displayed a significant difference in Trial 1 (males: 3% ± 1%, females: 2% ± 1%, p = .004) and Trial 2 (males: 3% ± 1%, females: 1% ± 1%, p = .008). Regression analysis showed a significant effect for sex (male) predicting change in hematocrit (β = 0.8, p = .032) and change in serum osmolality (β = −3.3, p = .005) when controlling for BML but not for urinary or tear measures. The intraclass correlation coefficients for females (ICC 2, 1) were highest for change in urine specific gravity (ICC = .62, p = .006) and lowest for change in tear osmolarity (ICC = −.14, p = .689), whereas for males, it was posthematocrit (ICC = .65, p = .003) and post tear osmolarity (ICC = .18, p = .256). Generally, biomarkers showed lower test–retest reliability in males compared with females but, overall, were classified as poor–moderate in both sexes. These findings suggest that the response and reliability of hydration biomarkers are sex specific and highlight the importance of accounting for BML differences.

Restricted access

Sweat Characteristics and Fluid Balance Responses During Two Heat Training Camps in Elite Female Field Hockey Players

Paul S.R. Goods, Bradley Wall, Brook Galna, Alannah K.A. McKay, Denise Jennings, Peter Peeling, and Greig Watson

We examined the sweat characteristics and fluid balance of elite female field hockey players during two heat training camps. Fourteen elite female field hockey players from the Australian national squad participated in two heat training camps held ∼6 months apart, following winter- (Camp 1) and summer-based training (Camp 2). Daily waking body mass (BM) and urine specific gravity (USG) were collected, along with several markers of sweat and fluid balance across two matches per camp. There was a 19% mean reduction in estimated whole-body sweat sodium concentration from Camp 1 (45.8 ± 6.5 mmol/L) to Camp 2 (37.0 ± 5.0 mmol/L; p < .001). Waking urine specific gravity ≥ 1.020 was observed in 31% of samples, with no significant differences in mean urine specific gravity or BM between camps (p > .05), but with substantial interindividual variation. Intramatch sweat rates were high (1.2–1.8 L/hr), with greater BM losses in Camp 1 (p = .030), resulting in fewer players losing ≥2% BM in Camp 2 (0%–8%), as compared with Camp 1 (36%–43%; p = .017). Our field data suggest that elite female field hockey players experience substantial sweat losses during competition in the heat regardless of the season. In agreement with previous findings, we observed substantial interindividual variation in sweat and hydration indices, supporting the use of individualized athlete hydration strategies.

Restricted access

Training Regimen of an Elite Ultramarathon Runner: A Case Study of What Led Up to the 24-Hour World-Record Run

Jonathan Byrne, Sarah Lynch, and G. Monique Mokha

Purpose: Ultramarathon running has gained popularity over several decades. Although there has been considerable research on training for other running events, from the 100-m to the marathon at 26.2 miles (42.2 km), there is little evidence on best practices for ultramarathons, where distances potentially exceed 100 miles (160.9 km). Methods: In this case study, we examine the training regimen of an elite ultramarathon runner who broke 8 world records in 2021 and 2022, including the 24-hour run in which he ran 319.6 km in September 2022. Training data from December 28, 2020, to September 17, 2022, were collected from the Strava application database (recorded on Coros watch) and analyzed using Microsoft Excel and Tableau. Results: Our subject completed 5 training blocks, with volume per training block averaging 172.1 to 263 km/wk. Peak running volume per training block occurred on average 3.2 weeks out from races and reached a maximum of 378 km/wk. Recovery was emphasized the week following a race, with less running (19 km/wk) and more cross-training. Interval-type workouts (1- to 10-km repeats) were completed throughout training blocks. The average pace during the 24-hour world-record run was 4 minutes and 30 seconds per kilometer (4:30/km), closely matching the overall average training pace. Conclusions: These findings suggest that training for ultramarathon races should include high-volume running at varied paces and intensity with cross-training to avoid injuries. We hope that this evidence helps athletes understand how to prepare for these ultraendurance events.

Open access

Auditing the Representation of Females Versus Males in Heat Adaptation Research

Monica K. Kelly, Ella S. Smith, Harry A. Brown, William T. Jardine, Lilia Convit, Steven J. Bowe, Dominique Condo, Joshua H. Guy, Louise M. Burke, Julien D. Périard, Rhiannon M.J. Snipe, Rodney J. Snow, and Amelia J. Carr

The aim of this audit was to quantify female representation in research on heat adaptation. Using a standardized audit tool, the PubMed database was searched for heat adaptation literature from inception to February 2023. Studies were included if they investigated heat adaptation among female and male adults (≥18–50 years) who were free from noncommunicable diseases, with heat adaptation the primary or secondary outcome of interest. The number and sex of participants, athletic caliber, menstrual status, research theme, journal impact factor, Altmetric score, Field-Weighted Citation Impact, and type of heat exposure were extracted. A total of 477 studies were identified in this audit, including 7,707 participants with ∼13% of these being female. Most studies investigated male-only cohorts (∼74%, n = 5,672 males), with ∼5% (n = 360 females) including female-only cohorts. Of the 126 studies that included females, only 10% provided some evidence of appropriate methodological control to account for ovarian hormone status, with no study meeting best-practice recommendations. Of the included female participants, 40% were able to be classified to an athletic caliber, with 67% of these being allocated to Tier 2 (i.e., trained/developmental) or below. Exercise heat acclimation was the dominant method of heat exposure (437 interventions), with 21 studies investigating sex differences in exercise heat acclimation interventions. We recommend that future research on heat adaptation in female participants use methodological approaches that consider the potential impact of sexual dimorphism on study outcomes to provide evidence-based guidelines for female athletes preparing for exercise or competition in hot conditions.

Restricted access

The Dose–Response in Elite Soccer: Preliminary Insights From Menstrual-Cycle Tracking During the FIFA Women’s World Cup 2019

Dawn Scott, Georgie Bruinvels, Dean Norris, and Ric Lovell

Purpose: This preliminary study examined the influence of estimated menstrual-cycle (MC) phase on responses to soccer matches and training sessions in preparation for and during the FIFA (Fédération internationale de football association) Women’s World Cup 2019. Methods: Twenty outfield players representing a national team were tracked over a 45-day period. External (10-Hz global positioning system; total and distance covered at high-metabolic power [≥20 W·kg−1]) and internal load measures (minutes ≥80% heart-rate maximum, sessional ratings of perceived exertion) were collected during all training and matches, with single-item wellness measures (fatigue, soreness, sleep quality, and sleep duration) collected each morning prior to activity. MC phase was estimated individually via an algorithm, informed from pretournament survey responses and ongoing symptom reporting (FitrWoman). Model comparison statistics were used to determine the impact of estimated MC phase in nonhormonal contraceptive users (n = 16). Results: Sessional rating of perceived exertion responses to total distances ≥5 km were higher during the luteal phase (+0.6–1.0 au; P ≤ .0178) versus menstruation (phase 1), but no other observable dose–response trends were observed. Sleep, fatigue, and soreness ratings were not typically associated with MC phase, with the exception of exacerbated fatigue ratings in luteal versus follicular phase 48 hours postmatch (−0.73 au, P = .0275). Conclusions: Preliminary findings suggest that estimated MC phase may contribute to the understanding of the dose–response to soccer training and matches.