You are looking at 1 - 10 of 8,852 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: All Content x
Clear All
Restricted access

Denys Batista Campos, Isabella Christina Ferreira, Matheus Almeida Souza, Macquiden Amorim Jr, Leonardo Intelangelo, Gabriela Silveira-Nunes, and Alexandre Carvalho Barbosa

Objective: To examine the selective influences of distinct acceleration profiles on the neuromuscular efficiency, force, and power during concentric and eccentric phases of isoinertial squatting exercise. Design: Cross-sectional study. Setting: Biomechanics laboratory of the university. Participants: A total of 38 active adults were divided according to their acceleration profiles: higher (n = 17; >2.5 m/s2) and lower acceleration group (n = 21; <2.5 m/s2). Intervention: All subjects performed squats until failure attached to an isoinertial conic pulley device monitored by surface electromyography of rectus femoris, vastus medialis, vastus lateralis, biceps femoris, and semitendinosus. Main Outcome Measures: An incremental optical encoder was used to assess maximal and mean power and force during concentric and eccentric phases. The neuromuscular efficiency was calculated using the mean force and the electromyographic linear envelope. Results: Between-group differences were observed for the maximal and mean force (P range = .001–.005), power (P = .001), and neuromuscular efficiency (P range = .001–.03) with higher significant values for the higher acceleration group in both concentric and eccentric phases. Conclusion: Distinct acceleration profiles affect the neuromuscular efficiency, force, and power during concentric and eccentric phases of isoinertial squatting exercise. To ensure immediate higher levels of power and force output without depriving the neuromuscular system, acceleration profiles higher than 2.5 m/s2 are preferable. The acceleration profiles could be an alternative to evolve the isoinertial exercise.

Restricted access

Kyung-eun Lee, Seung-min Baik, Chung-hwi Yi, Oh-yun Kwon, and Heon-seock Cynn

Context: Side bridge exercises strengthen the hip, trunk, and abdominal muscles and challenge the trunk muscles without the high lumbar compression associated with trunk extension or curls. Previous research using electromyography (EMG) reports that performance of the side bridge exercise highly activates the gluteus medius (Gmed). However, to the best of our knowledge, no previous research has investigated EMG amplitude in the hip and trunk muscles during side bridge exercise in subjects with Gmed weakness. Objective: The purpose of this study was to examine the EMG activity of the hip and trunk muscles during 3 variations of the side bridge exercise (side bridge, side bridge with knee flexion, and side bridge with knee flexion and hip abduction of the top leg) in subjects with Gmed weakness. Design: Repeated-measures experimental design. Setting: Research laboratory. Patients: Thirty subjects (15 females and 15 males) with Gmed weakness participated in this study. Intervention: Each subject performed 3 variations of the side bridge exercise in random order. Main Outcome Measures: Surface EMG was used to measure the muscle activities of the rectus abdominis, external oblique, longissimus thoracis, multifidus, Gmed, gluteus maximus, and tensor fasciae latae (TFL), and Gmed/TFL muscle activity ratio during 3 variations of the side bridge exercise. Results: There were significant differences in Gmed (F 2,56 = 110.054, P < .001), gluteus maximus (F 2,56 = 36.416, P < .001), and TFL (F 2,56 = 108.342, P < .001) muscles among the 3 side bridge exercises. There were significant differences in the Gmed/TFL muscle ratio (F 2,56 = 20.738, P < .001). Conclusion: Among 3 side bridge exercises, the side bridge with knee flexion may be effective for the individuals with Gmed weakness among 3 side bridge exercises to strengthen the gluteal muscles, considering the difficulty of the exercise and relative contribution of Gmed and TFL.

Restricted access

Bruno Augusto Lima Coelho, Helena Larissa das Neves Rodrigues, Gabriel Peixoto Leão Almeida, and Sílvia Maria Amado João

Context: Restriction in ankle dorsiflexion range of motion (ROM) has been previously associated with excessive dynamic knee valgus. This, in turn, has been correlated with knee pain in women with patellofemoral pain. Objectives: To investigate the immediate effect of 3 ankle mobilization techniques on dorsiflexion ROM, dynamic knee valgus, knee pain, and patient perceptions of improvement in women with patellofemoral pain and ankle dorsiflexion restriction. Design: Randomized controlled trial with 3 arms. Setting: Biomechanics laboratory. Participants: A total of 117 women with patellofemoral pain who display ankle dorsiflexion restriction were divided into 3 groups: ankle mobilization with anterior tibia glide (n = 39), ankle mobilization with posterior tibia glide (n = 39), and ankle mobilization with anterior and posterior tibia glide (n = 39). Intervention(s): The participants received a single session of ankle mobilization with movement technique. Main Outcome Measures: Dorsiflexion ROM (weight-bearing lunge test), dynamic knee valgus (frontal plane projection angle), knee pain (numeric pain rating scale), and patient perceptions of improvement (global perceived effect scale). The outcome measures were collected at the baseline, immediate postintervention (immediate reassessment), and 48 hours postintervention (48 h reassessment). Results: There were no significant differences between the 3 treatment groups regarding dorsiflexion ROM and patient perceptions of improvement. Compared with mobilization with anterior and posterior tibia glide, mobilization with anterior tibia glide promoted greater increase in dynamic knee valgus (P = .02) and greater knee pain reduction (P = .02) at immediate reassessment. Also compared with mobilization with anterior and posterior tibia glide, mobilization with posterior tibia glide promoted greater knee pain reduction (P < .01) at immediate reassessment. Conclusion: In our sample, the direction of the tibia glide in ankle mobilization accounted for significant changes only in dynamic knee valgus and knee pain in the immediate reassessment.

Restricted access

Arthur Alves Dos Santos, James Sorce, Alexandra Schonning, and Grant Bevill

This study evaluated the performance of 6 commercially available hard hat designs—differentiated by shell design, number of suspension points, and suspension tightening system—in regard to their ability to attenuate accelerations during vertical impacts to the head. Tests were conducted with impactor materials of steel, wood, and lead shot (resembling commonly seen materials in a construction site), weighing 1.8 and 3.6 kg and dropped from 1.83 m onto a Hybrid III head/neck assembly. All hard hats appreciably reduced head acceleration to the unprotected condition. However, neither the addition of extra suspension points nor variations in suspension tightening mechanism appreciably influenced performance. Therefore, these results indicate that additional features available in current hard hat designs do not improve protective capacity as related to head acceleration metrics.

Restricted access

Hannah L. Stedge and Theresa Miyashita

Clinical Scenario: Athletic trainers must be confident when performing life-saving skills, such as a cardiovascular assessment and cardiopulmonary resuscitation. Learning and performing skills on high-fidelity simulation manikins may improve athletic training students’ self-confidence and self-efficacy. Clinical Question: What are the effects of high-fidelity manikin simulation on athletic training students’ self-confidence and self-efficacy in performing emergency cardiovascular care? Summary of Key Findings: Three good-quality cohort studies were included. Two studies assessed the effect of high-fidelity cardiopulmonary resuscitation simulation, and one study assessed the effect of high-fidelity cardiovascular assessment. Two studies evaluated self-confidence, while the other study evaluated self-efficacy. All three studies found that high-fidelity simulation improved athletic training students’ self-confidence and self-efficacy. Clinical Bottom Line: There is currently consistent, good-quality evidence that supports the use of high-fidelity manikin simulation to improve athletic training students’ self-confidence and self-efficacy in performing cardiovascular skills and assessment. Future research should examine the effects of high-fidelity manikin simulation on the same academic levels of athletic training students to ensure generalizability of results. Strength of Recommendation: The grade of B is recommended by the Strength of Recommendation Taxonomy for consistent, good-quality evidence.

Restricted access

Sophie E. Heywood, Benjamin F. Mentiplay, Ann E. Rahmann, Jodie A. McClelland, Paula R. Geigle, Kelly J. Bower, and Ross A. Clark

Context: Aquatic plyometric training may provide benefits due to reduced joint loading compared with land plyometric training; however, the reduced loading may also limit performance gains. Objective: To systematically review the effect of aquatic plyometric training on strength, performance outcomes, soreness, and adverse events in healthy individuals. Evidence acquisition: Five databases were searched from inception to June 2020. Quality assessment and data extraction were independently completed by 2 investigators. When similar outcome measures were used, standardized mean differences were calculated. Evidence synthesis: A total of 19 randomized controlled trials with 633 participants (mean age, range 14–30 y) were included. Aquatic plyometric training was most commonly performed in waist to chest deep water (12/19 studies), 2 to 3 times per week for 6 to 12 weeks (18/19 studies), with final program foot contacts ranging from 120 to 550. Meta-analyses were not completed due to the clinical and statistical heterogeneity between studies. Compared with land plyometric training, aquatic plyometric training exercises and dosage were replicated (15/16 studies) and showed typically similar performance gains (3/4 knee extensor strength measures, 2/4 leg extensor strength measures, 3/4 knee flexor strength measures, 7/10 vertical jump measures, 3/3 sprint measures). In total, 2 of 3 studies monitoring muscle soreness reported significantly less soreness following training in water compared with on land. Compared with no active training (no exercise control group or passive stretching), most effect sizes demonstrated a mean improvement favoring aquatic plyometric training (23/32 measures). However, these were not significant for the majority of studies measuring isokinetic knee strength, vertical jump, and sprinting. The effect sizes for both studies assessing leg press strength indicated that aquatic plyometric training is significantly more effective than no training. Conclusion: Aquatic plyometric training appears similarly effective to land plyometric exercise for improving strength, jumping, and sprinting and may be indicated when joint impact loading needs to be minimized. However, the low quality of studies limits the strength of the conclusions.

Restricted access

Jacob J. Levy, Terrance L. Tarver, and Hannah R. Douglas

Changes in exercise behavior and negative emotional states (i.e., depression, anxiety, and stress) in combat sport (e.g., boxing, wrestling, martial arts) athletes were examined the month prior to gym closures related to the COVID-19 pandemic (February 2020), and approximately 1 month following gym closures (May 2020). A total of 312 combat sport athletes from 33 different countries responded to the study solicitation. Results indicated a significant decrease in combat sport training following gym closures; however, participation in other exercise activities did not significantly change. Significant mean increases in depression, anxiety, and stress were found following combat gym closures. Regression analyses revealed that number of hours of participants participated in combat sport training added significant incremental variance explained in depressive and stress symptoms above and beyond that accounted for by sex differences, preexisting conditions, and training level. Practical implications regarding losses to preferred exercise activities are discussed.

Restricted access

Megan Drew, Trent A. Petrie, and Tess Palmateer

College student athletes face unique, sport-related stressors that may lead to, or exacerbate, mental health (MH) concerns and symptoms. Although the National Collegiate Athletic Association has identified MH screening as a best practice, minimal data exist regarding contemporary screening practices. We explored National Collegiate Athletic Association Division I (DI), Division II (DII), and Division III (DIII) athletic departments’ current MH screening practices (N = 264). Compared with DII/DIII (53%), a greater percentage of Division I (89%) conducted formal MH screening. At DII/DIII institutions, athletic trainers were more likely to both administer and review screeners than any other sports medicine professional; sport psychologists primarily oversaw these tasks at DI schools. DI, compared with DII/DIII, institutions were more likely to have had a student athlete attempt suicide (62% vs. 40%) and participate in inpatient treatment (69% vs. 43%). There is a clear need for the National Collegiate Athletic Association to continue to promote policies that support MH screening and to create mechanisms in which it can monitor institutional involvement.

Restricted access

Zachary L. Mannes, Erin G. Ferguson, Nicole Ennis, Deborah S. Hasin, and Linda B. Cottler

Over 80% of National Football League (NFL) retirees experience daily pain. Pain acceptance is an important psychological construct implicated in the intensity of chronic pain, though these findings have not been extended to NFL retirees. Therefore, the current study examined the association between pain acceptance and pain intensity among former NFL athletes. NFL retirees (N = 90) recruited from 2018 to 2019 completed questionnaires that assessed pain, substance use, and NFL career information. Multiple linear regression examined the association between current pain acceptance and pain intensity while adjusting for other risk factors of pain. NFL retirees reported average scores of 33.31 (SD = 10.00), and 2.18 (SD = 2.40) on measures of pain acceptance and pain intensity, respectively. After covariate adjustment, greater pain acceptance (β = −0.538, p < .001) was associated with lower pain intensity. These findings can further inform the behavioral and mental health care of retired NFL athletes.