Browse

You are looking at 1 - 10 of 1,846 items for :

  • Physical Education and Coaching x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: All Content x
Clear All
Free access

The Anabolic Response to Protein Ingestion During Recovery From Exercise Has No Upper Limit in Magnitude and Duration In Vivo in Humans: A Commentary

Oliver C. Witard and Samuel Mettler

A comprehensive recent study by Trommelen et al. demonstrated that muscle tissue exhibits a greater capacity to incorporate exogenous exogenous protein-derived amino acids into bound muscle protein than was previously appreciated, at least when measured in “anabolically sensitive,” recreationally active (but not resistance-trained), young men following resistance exercise. Moreover, this study demonstrated that the duration of the postprandial period is modulated by the dose of ingested protein contained within a meal, that is, the postexercise muscle protein synthesis response to protein ingestion was more prolonged in 100PRO than 25PRO. Both observations represent important scientific advances in the field of protein metabolism. However, we respectfully caution that the practical implications of these findings may have been misinterpreted, at least in terms of dismissing the concept of protein meal distribution as an important factor in optimizing muscle tissue anabolism and/or metabolic health. Moreover, based on emerging evidence, this idea that the anabolic response to protein ingestion has no upper limit does not appear to translate to resistance-trained young women.

Restricted access

Protein Intake Distribution: Beneficial, Detrimental, or Inconsequential for Muscle Anabolism? Response to Witard & Mettler

Jorn Trommelen, Andrew M. Holwerda, and Luc J.C. van Loon

Restricted access

Volume 34 (2024): Issue 4 (Jul 2024)

Restricted access

An Opinion on the Interpretation of Bone Turnover Markers Following Acute Exercise or Nutrition Intervention and Considerations for Applied Research

Mark J. Hutson and Ian Varley

It is important for athlete and public health that we continue to develop our understanding of the effects of exercise and nutrition on bone health. Bone turnover markers (BTMs) offer an opportunity to accelerate the progression of bone research by revealing a bone response to exercise and nutrition stimuli far more rapidly than current bone imaging techniques. However, the association between short-term change in the concentration of BTMs and long-term bone health remains ambiguous. Several other limitations also complicate the translation of acute BTM data to applied practice. Importantly, several incongruencies exist between the effects of exercise and nutrition stimuli on short-term change in BTM concentration compared with long-term bone structural outcomes to similar stimuli. There are many potential explanations for these inconsistencies, including that short-term study designs fail to encompass a full remodeling cycle. The current article presents the opinion that data from relatively acute studies measuring BTMs may not be able to reliably inform applied practice aiming to optimize bone health. There are important factors to consider when interpreting or translating BTM data and these are discussed.

Restricted access

Caffeine Gum Improves Reaction Time but Reduces Composure Versus Placebo During the Extra-Time Period of Simulated Soccer Match-Play in Male Semiprofessional Players

Adam Field, Liam Corr, Laurence Birdsey, Christina Langley, Ben Marshall, Greg Wood, Mark Hearris, Diogo Martinho, Christa Carbry, Robert Naughton, James Fleming, Magni Mohr, Peter Krustrup, Mark Russell, and Liam David Harper

This study aimed to determine whether caffeine gum influenced perceptual-cognitive and physical performance during the extra-time period of simulated soccer match-play. Semiprofessional male soccer players (n = 12, age: 22 ± 3 years, stature: 1.78 ± 0.06 m, mass: 75 ± 9 kg) performed 120-min soccer-specific exercise on two occasions. In a triple-blind, randomized, crossover design, players chewed caffeinated (200 mg; caffeine) or control (0 mg; placebo) gum for 5 min following 90 min of soccer-specific exercise. Perceptual-cognitive skills (i.e., passing accuracy, reaction time, composure, and adaptability) were assessed using a soccer-specific virtual reality simulator, collected pre- and posttrial. Neuromuscular performance (reactive-strength index, vertical jump height, absolute and relative peak power output, and negative vertical displacement) and sprint performance (15 and 30 m) were measured at pretrial, half-time, 90 min, and posttrial. Caffeine gum attenuated declines in reaction time (pre: 90.8 ± 0.8 AU to post: 90.7 ± 0.8 AU) by a further 4.2% than placebo (pre: 92.1 ± 0.8 AU to post: 88.2 ± 0.8 AU; p < .01). Caffeine gum reduced composure by 4.7% (pre: 69.1 ± 0.8 AU to post: 65.9 ± 0.8 AU) versus placebo (pre: 68.8 ± 0.8 AU to post: 68.3 ± 0.8 AU; p < .01). Caffeine gum did not influence any other variables (p > .05). Where caffeine gum is consumed by players prior to extra-time, reaction time increases but composure may be compromised, and neuromuscular and sprint performance remain unchanged. Future work should assess caffeine gum mixes with substances like L-theanine that promote a relaxed state under stressful conditions.

Restricted access

Effects of Phenylcapsaicin on Intraocular and Ocular Perfusion Pressure During a 30-Min Cycling Task: A Placebo-Controlled, Triple-Blind, Balanced Crossover Study

Paula M. Lara Vázquez, María Dolores Morenas-Aguilar, Sara Chacón Ventura, Pablo Jiménez-Martínez, Carlos Alix-Fages, Amador García Ramos, Jesús Vera, and Beatriz Redondo

The main objective of this placebo-controlled, triple-blind, balanced crossover study was to assess the acute effects of phenylcapsaicin (PC) intake (2.5 mg) on intraocular pressure (IOP), ocular perfusion pressure (OPP), and heart rate (HR) during a 30-min cycling task performed at 15% of the individual maximal power. Twenty-two healthy young adults performed the cycling task 45 min after ingesting PC or placebo. IOP was measured with a rebound tonometer before exercise, during cycling (every 6 min), and after 5 and 10 min of recovery. OPP was assessed before and after exercise. HR was monitored throughout the cycling task. We found an acute increase of IOP levels related to PC consumption while cycling (mean difference = 1.91 ± 2.24 mmHg; p = .007, η p 2 = .30 ), whereas no differences were observed for OPP levels between the PC and placebo conditions (mean difference = 1.33 ± 8.70 mmHg; p = .608). Mean HR values were higher after PC in comparison with placebo intake (mean difference = 3.11 ± 15.87 bpm, p = .019, η p 2 = .24 ), whereas maximum HR did not differ between both experimental conditions (p = .199). These findings suggest that PC intake before exercise should be avoided when reducing IOP levels is desired (e.g., glaucoma patients or those at risk). Future studies should determine the effects of different ergogenic aids on IOP and OPP levels with other exercise configurations and in the long term.

Free access

Long-Term Evaluation of Lipid Profile Changes in Olympic Athletes

Giuseppe Di Gioia, Lorenzo Buzzelli, Viviana Maestrini, Maria Rosaria Squeo, Erika Lemme, Sara Monosilio, Andrea Serdoz, Roberto Fiore, Domenico Zampaglione, Andrea Segreti, and Antonio Pelliccia

Dyslipidemia is a major contributor to the development of atherosclerotic cardiovascular disease. Despite high level of physical activity, athletes are not immune from dyslipidemia, but longitudinal data on the variation of lipids are currently lacking. We sought to assess lipid profile changes over time in Olympic athletes practicing different sports disciplines (power, skills, endurance, and mixed). We enrolled 957 consecutive athletes evaluated from London 2012 to Beijing 2022 Olympic Games. Dyslipidemia was defined as low-density lipoprotein (LDL) ≥115 mg/dl, high-density lipoprotein (HDL) <40 mg/dl for males, or HDL <50 mg/dl for females. Hypertriglyceridemia was defined as triglycerides >150 mg/dl. At the follow-up, a variation of ±40 mg/dl for LDL, ±6 mg/dl for HDL, and ±50 mg/dl for triglycerides was considered relevant. Athletes with follow-up <10 months or taking lower lipid agents were excluded. Follow-up was completed in 717 athletes (74.9%), with a mean duration of 55.6 months. Mean age was 27.2 ± 4.8 years old, 54.6% were male (n = 392). Overall, 19.8% (n = 142) athletes were dyslipidemic at both blood tests, being older, practicing nonendurance sports, and predominantly male. In 69.3% (n = 129) of those with elevated LDL at t 0, altered values were confirmed at follow-up, while the same occurred in 36.5% (n = 15) with hypo-HDL and 5.3% (n = 1) in those with elevated triglycerides. Weight and fat mass percentage modifications did not affect lipid profile variation. LDL hypercholesterolemia tends to persist over time especially among male, older, and nonendurance athletes. LDL hypercholesterolemia detection in athletes should prompt early preventive intervention to reduce the risk of future development of atherosclerotic disease.

Restricted access

Acute and Chronic Weight-Making Practice in Professional Mixed Martial Arts Athletes: An Analysis of 33 Athletes Across 80 Fights

Reid Reale, Junzhu Wang, Charles Hu Stull, Duncan French, Dean Amasinger, and Ran Wang

Mixed martial arts’ popularity has increased in recent years, alongside descriptive research and evidence-based performance recommendations. Guidelines for (both chronic and acute) weight making exist; however, how these translate in real-life scenarios and detailed investigations on practices in larger groups deserve attention. The present study examined the body mass (BM) and composition of 33 professional mixed martial arts athletes preparing for 80 fights. Athletes were supported by on-site dietitians, who encouraged evidence-based practices. Fasted BM was measured throughout the last ∼10 days before all bouts (acute weight management phase). A subset of athletes had body composition assessed before and after the chronic weight loss phase for 40 fights. Most athletes engaged in chronic BM loss, and all engaged in acute weight loss. Many lost fat-free mass (FFM) during the chronic phase, with rates of BM loss <0.5% best preserving FFM. Regardless of losses, the present athletes possessed greater FFM than other combat sport athletes and engaged in greater acute weight loss. Dehydration in the 24–48 hr before the weigh-in was not reflective of weight regain after the weigh-in, rather BM 7–10 days before the weigh-in was most reflective. These findings suggest that many mixed martial arts athletes could increase FFM at the time of competition by maintaining leaner physiques outside of competition and/or allowing increased time to reduce BM chronically. Acutely, athletes can utilize evidence-based protocols, eliminating carbohydrates, fiber, sodium, and finally fluid in a staged approach, before the weigh-in, reducing the amount of sweating required, thus theoretically better protecting health and preserving performance.

Restricted access

Test–Retest Reliability of Running Economy and Metabolic and Cardiorespiratory Parameters During a Multistage Incremental Treadmill Test in Male Middle- and Long-Distance Runners

Aidan J. Brady, Mark Roantree, and Brendan Egan

This study investigated the test–retest reliability of running economy (RE) and metabolic and cardiorespiratory parameters related to endurance running performance using a multistage incremental treadmill test. On two occasions separated by 21–28 days, 12 male middle- and long-distance runners ran at 10, 11, 12, 13, and 14 km/hr for 8 min each stage, immediately followed by a ramp test to volitional exhaustion. Carbohydrate (10% maltodextrin solution) was consumed before and during the test to provide ∼1 g/min of exercise. RE, minute ventilation ( V ˙ E ), oxygen consumption ( V ˙ O 2 ), carbon dioxide production ( V ˙ CO 2 ), respiratory exchange ratio (RER), heart rate (HR), ratings of perceived exertion (RPE), and blood glucose and lactate concentrations were recorded for each stage and at volitional exhaustion. Time-to-exhaustion (TTE) and peak oxygen consumption ( V ˙ O 2 peak ) during the ramp test were also recorded. Absolute reliability, calculated as the coefficient of variation (CV) between repeated measures, ranged from 2.3% to 3.1% for RE, whereas relative reliability, calculated as the intraclass correlation coefficient (ICC), ranged from .42 to .79. V ˙ E , V ˙ O 2 , V ˙ O 2 peak , V ˙ CO 2 , RER, and HR had a CV of 1.1%–4.3% across all stages. TTE and RPE had a CV of 7.2% and 2.3%–10.8%, respectively, while glucose and lactate had a CV of 4.0%–17.8%. All other parameters, except for blood glucose, were demonstrated to have good-to-excellent relative reliability assessed by ICC. Measures of RE, V ˙ O 2 peak , and TTE were reliable during this two-phase multistage incremental treadmill test in a cohort of trained and highly trained male middle- and long-distance runners.

Restricted access

Energetics of a World-Tour Female Road Cyclist During a Multistage Race (Tour de France Femmes)

Jose L. Areta, Emily Meehan, Georgie Howe, and Leanne M. Redman

Despite the increased popularity of female elite road cycling, research to inform the fueling requirements of these endurance athletes is lacking. In this case study, we report for the first time the energetics of a female world-tour cyclist competing in the 2023 Tour de France Femmes, an 8-day race of the Union Cycliste Internationale. The 29-year-old athlete presented with oligomenorrhea and low T3 before the race. Total daily energy expenditure assessed with the doubly labeled water technique was 7,572 kcal/day (∼4.3 physical activity levels), among the highest reported in the literature to date for a female. Crank-based mean maximal power was consistent with female world-tour cyclists (5 min, mean 342 W, 4.8 W/kg; 20 min 289 W, 4.1 W/kg). The average daily energy intake measured with the remote food photography method (Stage Days 1–7) was 5,246 kcal and carbohydrate intake was 13.7 g/kg (range 9.7–15.9 g/kg), and 84 g/hr during stages, and an average fat intake of 15% of daily energy intake. An estimated 2,326 kcal/day energy deficit was evidenced in a 2.2 kg decrease in body mass. Notwithstanding the high carbohydrate intake, the athlete was unable to match the energy requirements of the competition. Despite signs of energy deficiency preexisting (oligomenorrhea and low T3), and other further developing during the race (weight loss), performance was in line with that of other world-tour cyclists and a best personal performance was recorded for the last stage. This case study emphasizes the need for further research to inform energy requirements for female athletes’ optimal performance and health.