Browse

You are looking at 1 - 10 of 5,228 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: All Content x
Clear All
Restricted access

The Amount and Pattern of Reciprocal Compensations Predict Performance Stability in a Visually Guided Finger Force Production Task

Valéria Andrade, Nicole S. Carver, Francis M. Grover, Scott Bonnette, and Paula L. Silva

Previous work suggests that synergistic activity among motor elements implicated in force production tasks underlies enhanced performance stability associated with visual feedback. A hallmark of synergistic activity is reciprocal compensation, that is, covariation in the states of motor elements that stabilizes critical performance variables. The present study examined if characteristics of reciprocal compensation are indicators of individuals’ capacity to respond adaptively to variations in the resolution of visual feedback about criterion performance. Twenty healthy adults (19.25 ± 1.25 years; 15 females and five males) pressed two sensors with their index fingers to produce a total target force equivalent to 20% of their maximal voluntary contraction under nine conditions that differed in the spatial resolution of real-time feedback about their performance. By combining within-trial uncontrolled manifold and sample entropy analyses, we quantified the amount and degree of irregularity (i.e., non-repetitiveness) of reciprocal compensations over time. We found a U-shaped relationship between performance stability and gain. Importantly, this relationship was moderated by the degree of irregularity of reciprocal compensation. Lower irregularity in reciprocal compensation patterns was related to individuals’ capacity to maintain (or minimize losses in) performance under changes in feedback resolution. Results invite future investigation into how interindividual variations in reciprocal compensation patterns relate to differences in control strategies supporting adaptive responses in complex, visually guided motor tasks.

Restricted access

Muscle Coordination During Maximal Butterfly Stroke Swimming: Comparison Between Competitive and Recreational Swimmers

Keisuke K. Yamakawa, Rena Nishiwaki, and Yasuo Sengoku

This study aimed to clarify the differences in muscular coordination during butterfly swimming between high- and low-performance swimmers using muscle synergy analysis. Eight female competitive swimmers and 8 female recreational swimmers participated in this study. The participants swam a 25-m butterfly stroke with maximum effort. Surface electromyography was measured from 12 muscles and muscle synergy analysis was performed from the data using nonnegative matrix factorization algorithms. From the results of the muscle synergy analysis, 4 synergies were extracted from both groups. Synergies 1 and 2 were characterized by coactivation of the upper and lower limb muscles in the recreational swimmers, whereas only synergy 1 was characterized by this in the competitive swimmers. Synergy 3 was involved in arm recovery in both groups. Synergy 4 was only involved in the downward kick in the competitive swimmers. From these results, it can be concluded that muscle synergies with combined coordination of upper and lower limb muscles were extracted more in the recreational swimmers and that the competitive swimmers controlled the downward kick with an independent synergy and that the adjustment of the timing of the downward kick may be an important factor for the efficient performance of butterfly swimming.

Restricted access

Specific Contribution of the Transversus Abdominis for Postural Control Against Perturbation Caused by Kinesthetic Illusion

Hiroshi Akuzawa, Tsuyoshi Morito, Tomoki Oshikawa, Yu Okubo, Simon Brumagne, and Koji Kaneoka

Functional independence of the transversus abdominis (TrA) from other trunk muscles for postural control is still unclear. This study aimed to clarify the specific function of the TrA to control standing posture by vibratory stimulation of the triceps surae. Fifteen men participated in this study. Muscle activity of the TrA, internal oblique, lumbar multifidus, gluteus maximus, rectus femoris, biceps femoris, gastrocnemius, and tibialis anterior was measured using fine-wire and surface electrodes. Participants were asked to maintain a quiet standing posture with and without vibration of the triceps surae, which induced a kinesthetic illusion and the concomitant backward sway of the body. The muscle activity of each muscle for 10 s was extracted with and without vibration. The muscle activity levels were compared between the conditions by a paired t-test or Wilcoxon signed-rank test. The activity of the TrA and rectus femoris was increased, whereas the internal oblique showed no change as a result of the induced kinesthetic illusion. In addition, the activity of the multifidus and biceps femoris was decreased. The TrA and rectus femoris could contribute to control the backward sway of the body. Furthermore, the TrA may have functional independence from the internal oblique during standing postural control. These results warrant further study in patients with low back pain.

Restricted access

Marker-Based Versus IMU-Based Kinematics for Estimates of Lumbar Spine Loads Using a Full-Body Musculoskeletal Model

Maria Prado, Sakiko Oyama, and Hugo Giambini

Musculoskeletal modeling, typically implemented using marker-based systems in laboratory environments, is commonly used for noninvasive estimations of loads. Inertial measurement units (IMUs) have become an alternative for the evaluation of kinematics. However, estimates of spine joint contact forces using IMUs have yet to be thoroughly evaluated. Dynamics tasks and static postures from activities of daily living were captured on 11 healthy subjects using both systems simultaneously. Spine kinematics obtained from IMU- and marker-based systems and L4–L5 joint contact forces were compared. Lateral bending resulted in a weak agreement with significant differences between the 2 systems (P = .02, average root mean-squared error = 4.81), whereas flexion–extension and axial rotation exhibited the highest agreement with no significant differences (P < .05, average root mean-squared error = 5.51 and P < .31, average root mean-squared error = 5.08, respectively). All tasks showed excellent correlations (R 2 = .76–.99) in estimated loads between systems. Differences in predicted loads at the L4–L5 were only observed during flexion–extension (1041 N vs 947 N, P = .0004) and walking with weights (814 N vs 727 N, P = .004). Different joint reaction force outcomes were obtained in 2 of the 8 tasks between systems, suggesting that IMUs can be robust tools allowing for convenient and less expensive evaluations and for longitudinal assessments inside and outside the laboratory setting.

Restricted access

Characterizing Longitudinal Alterations in Postural Control Following Lower Limb Injury in Professional Rugby Union Players

Molly F. McCarthy-Ryan, Stephen D. Mellalieu, Holly Jones, Adam Bruton, and Isabel S. Moore

Assessment of player’s postural control following a lower limb injury is of interest to sports medicine practitioners due to its fundamental role in daily tasks and sporting activities. The aim was to longitudinally monitor professional rugby union players’ postural control during each phase of the rehabilitation program (acute, middle, and late) following a lower limb injury. Seven male rugby union players (height 1.80 [0.02] m; mass 100.3 [11.4] kg; age 24 [4] y) sustained a time loss, noncontact lower limb injury. Static postural control was assessed via sway path (in meters), and dynamic postural control was assessed via vertical postural stability index. Group differences (P < .05) were reported across the acute, middle, and late phase. Smaller magnitudes of sway path were observed for eyes-open sway path, and for the middle and late phase smaller magnitudes of vertical postural stability index (P < .05) at the end session compared with first session. Whereas larger magnitudes of vertical postural stability index were found between baseline and the last session (P < .05). Large interindividual and intraindividual variation was apparent across the 3 phases of rehabilitation. Postural control improvements were identified during rehabilitation. However, postural control did not return to baseline, with altered kinetics throughout each rehabilitation phase.

Restricted access

Effect of Data and Gap Characteristics on the Nonlinear Calculation of Motion During Locomotor Activities

Arash Mohammadzadeh Gonabadi, Thad W. Buster, Guilherme M. Cesar, and Judith M. Burnfield

This study investigated how data series length and gaps in human kinematic data impact the accuracy of Lyapunov exponents (LyE) calculations with and without cubic spline interpolation. Kinematic time series were manipulated to create various data series lengths (28% and 100% of original) and gap durations (0.05–0.20 s). Longer gaps generally resulted in significantly higher LyE% error values in each plane in noninterpolated data. During cubic spline interpolation, only the 0.20-second gap in frontal plane data resulted in a significantly higher LyE% error. Data series length did not significantly affect LyE% error in noninterpolated data. During cubic spline interpolation, sagittal plane LyE% errors were significantly higher at shorter versus longer data series lengths. These findings suggest that not interpolating gaps in data could lead to erroneously high LyE values and mischaracterization of movement variability. When applying cubic spline, a long gap length (0.20 s) in the frontal plane or a short sagittal plane data series length (1000 data points) could also lead to erroneously high LyE values and mischaracterization of movement variability. These insights emphasize the necessity of detailed reporting on gap durations, data series lengths, and interpolation techniques when characterizing human movement variability using LyE values.

Restricted access

Osteoarthritic Tibiofemoral Joint Contact Characteristics During Weightbearing With Arch-Supported and Standalone Lateral Wedge Insoles

Calvin T.F. Tse, Michael B. Ryan, Natasha M. Krowchuk, Alexander Scott, and Michael A. Hunt

Imbalanced joint load distribution across the tibiofemoral surface is a risk factor for osteoarthritic changes to this joint. Lateral wedge insoles, with and without arch support, are a form of biomechanical intervention that can redistribute tibiofemoral joint load, as estimated by external measures of knee load. The objective of this study was to examine the effect of these insoles on the internal joint contact characteristics of osteoarthritic knees during weightbearing. Fifteen adults with tibiofemoral osteoarthritis underwent magnetic resonance imaging of the affected knee, while standing under 3 insole conditions: flat control, lateral wedge alone, and lateral wedge with arch support. Images were processed, and the surface area and centroid location of joint contact were quantified separately for the medial and lateral tibiofemoral compartments. Medial contact surface area was increased with the 2 lateral wedge conditions compared with the control (P ≤ .012). A more anterior contact centroid was observed in the medial compartment in the lateral wedge with arch support compared with the lateral wedge alone (P = .009). Significant changes in lateral compartment joint contact outcomes were not observed. These findings represent early insights into how loading at the tibiofemoral interface may be altered by lateral wedge insoles as a potential intervention for knee osteoarthritis.

Restricted access

Volume 40 (2024): Issue 3 (Jun 2024)

Restricted access

Volume 18 (2024): Issue 2 (Jun 2024)

Restricted access

Adapted Physical Activity Across the Life Span

Paul R. Malinowski, Paul H. Warner, and Wesley J. Wilson,