You are looking at 1 - 10 of 4,573 items for :

  • Physical Education and Coaching x
  • Sport and Exercise Science/Kinesiology x
  • All content x
Clear All
Restricted access

Arthur H. Bossi, Cristian Mesquida, Louis Passfield, Bent R. Rønnestad and James G. Hopker

Purpose: Maximal oxygen uptake (V˙O2max) is a key determinant of endurance performance. Therefore, devising high-intensity interval training (HIIT) that maximizes stress of the oxygen-transport and -utilization systems may be important to stimulate further adaptation in athletes. The authors compared physiological and perceptual responses elicited by work intervals matched for duration and mean power output but differing in power-output distribution. Methods: Fourteen cyclists (V˙O2max 69.2 [6.6] mL·kg−1·min−1) completed 3 laboratory visits for a performance assessment and 2 HIIT sessions using either varied-intensity or constant-intensity work intervals. Results: Cyclists spent more time at >90%V˙O2max during HIIT with varied-intensity work intervals (410 [207] vs 286 [162] s, P = .02), but there were no differences between sessions in heart-rate- or perceptual-based training-load metrics (all P ≥ .1). When considering individual work intervals, minute ventilation (V˙E) was higher in the varied-intensity mode (F = 8.42, P = .01), but not respiratory frequency, tidal volume, blood lactate concentration [La], ratings of perceived exertion, or cadence (all F ≤ 3.50, ≥ .08). Absolute changes (Δ) between HIIT sessions were calculated per work interval, and Δ total oxygen uptake was moderately associated with ΔV˙E (r = .36, P = .002). Conclusions: In comparison with an HIIT session with constant-intensity work intervals, well-trained cyclists sustain higher fractions of V˙O2max when work intervals involved power-output variations. This effect is partially mediated by an increased oxygen cost of hyperpnea and not associated with a higher [La], perceived exertion, or training-load metrics.

Restricted access

Erik Trøen, Bjarne Rud, Øyvind Karlsson, Camilla Høivik Carlsen, Matthias Gilgien, Gøran Paulsen, Ola Kristoffer Tosterud and Thomas Losnegard

Purpose: To investigate how self-selected pole length (PL) of ∼84% (PL84%) compared with ∼90% (PL90%) of body height influenced performance during a 700-m time trial with undulating terrain on snow. Methods: Twenty-one cross-country skiers, 7 of whom were women, performed 4 trials at a maximal effort in a counterbalanced fashion with PL84% and PL90% separated by 20-minute breaks between trials. In trials I and II, only double poling was allowed, while in trials III and IV, skiers used self-selected classical subtechniques. Continuous speed, cyclic parameters, and heart rate were collected using microsensors in addition to a post-time-trial rating of perceived exertion (RPE). Results: The 700-m times with only double poling were significantly shorter with PL90% than PL84% (mean ± 95% confidence limits –1.6% ± 1.0%). Segment analyses showed higher speed with PL90% in uphill sections than with PL84% (3.7% ± 2.1%), with the greatest difference found for the female skiers (5.6% ± 2.9%). In contrast, on flat terrain at high skiing speeds, speed was reduced with PL90% compared with PL84% (–1.5% ± 1.4%); this was only significant for the male skiers. During free choice of classical subtechniques, PL did not influence performance in any segments, choice of subtechnique, or cycle rate during the trials. No differences in rating of perceived exertion or heart rate between PLs were found. Conclusions: PL90% improved performance in uphills at low speeds when using double poling but hindered performance on flat terrain and at higher speeds compared with self-selected PLs. Choice of PL should, therefore, be based on racecourse topography, preferred subtechniques, and the skier’s physiological and technical abilities.

Open access

Lorenzo Lolli, Alan M. Batterham, Gregory MacMillan, Warren Gregson and Greg Atkinson

Open access

Jos J. de Koning

Restricted access

Rachel McCormick, Alex Dreyer, Brian Dawson, Marc Sim, Leanne Lester, Carmel Goodman and Peter Peeling

The authors compared the effectiveness of daily (DAY) versus alternate day (ALT) oral iron supplementation in athletes with suboptimal iron. Endurance-trained runners (nine males and 22 females), with serum ferritin (sFer) concentrations <50 μg/L, supplemented with oral iron either DAY or ALT for 8 weeks. Serum ferritin was measured at baseline and at fortnightly intervals. Hemoglobin mass (Hbmass) was measured pre- and postintervention in a participant subset (n = 10). Linear mixed-effects models were used to assess the effectiveness of the two strategies on sFer and Hbmass. There were no sFer treatment (p = .928) or interaction (p = .877) effects; however, sFer did increase (19.7 μg/L; p < .001) over the 8-week intervention in both groups. In addition, sFer was 21.2 μg/L higher (p < .001) in males than females. No Hbmass treatment (p = .146) or interaction (p = .249) effects existed; however, a significant effect for sex indicated that Hbmass was 140.85 g higher (p = .004) in males compared with females. Training load (p = .001) and dietary iron intake (p = .015) also affected Hbmass. Finally, there were six complaints of severe gastrointestinal side effects in DAY, but only one in ALT. In summary, both supplement strategies increased sFer in athletes with suboptimal iron status; however, the ALT approach was associated with lower incidence of gastrointestinal upset.

Restricted access

Rachel McCormick, Brian Dawson, Marc Sim, Leanne Lester, Carmel Goodman and Peter Peeling

The authors compared the effectiveness of two modes of daily iron supplementation in athletes with suboptimal iron stores: oral iron (PILL) versus transdermal iron (PATCH). Endurance-trained runners (nine males and 20 females), with serum ferritin concentrations <50 μg/L, supplemented with oral iron or iron patches for 8 weeks, in a parallel group study design. Serum ferritin was measured at baseline and fortnightly intervals. Hemoglobin mass and maximal oxygen consumption (V˙O2max) were measured preintervention and postintervention in PATCH. A linear mixed effects model was used to assess the effectiveness of each mode of supplementation on sFer. A repeated-measures analysis of variance was used to assess hemoglobin mass and V˙O2max outcomes in PATCH. There was a significant time effect (p < .001), sex effect (p = .013), and Time × Group interaction (p = .009) for sFer. At Week 6, PILL had significantly greater sFer compared with PATCH (15.27 μg/L greater in PILL; p = .019). Serum ferritin was 15.53 μg/L greater overall in males compared with females (p = .013). There were no significant differences in hemoglobin mass (p = .727) or V˙O2max (p = .929) preintervention to postintervention in PATCH. Finally, there were six complaints of severe gastrointestinal side effects in PILL and none in PATCH. Therefore, this study concluded that PILL effectively increased sFer in athletes with suboptimal iron stores, whereas PATCH showed no beneficial effects.

Restricted access

Ryan G. Timmins, Baubak Shamim, Paul J. Tofari, Jack T. Hickey and Donny M. Camera

Purpose: To investigate strength and structural adaptations after 12 weeks of resistance, endurance cycling, and concurrent training. Methods: Thirty-two healthy males undertook 12 weeks of resistance-only (RT; n = 10), endurance-only (END; n = 10), or concurrent resistance and endurance training (CONC; n = 12). Biceps femoris long head (BFlh) architecture, strength (3-lift 1-repetition maximum), and body composition were assessed. Results: Fascicle length of the BFlh reduced 15% (6%) (P < .001) and 9% (6%) (P < .001) in the END and CONC groups postintervention, with no change in the RT group (−4% [11%], P = .476). All groups increased BFlh pennation angle (CONC: 18% [9%], RT: 14% [8%], and END: 18% [10%]). Thickness of the BFlh increased postintervention by 7% (6%) (P = .002) and 7% (7%) (P = .003) in the CONC and RT groups, respectively, but not in the END group (0% [3%], P = .994). Both the CONC and RT groups significantly increased by 27% (11%) (P < .001) and 33% (12%) (P < .001) in 3-lift totals following the intervention, with no changes in the END cohort (6% [6%], P = .166). No significant differences were found for total body (CONC: 4% [2%], RT: 4% [2%], and END: 3% [2%]) and leg (CONC: 5% [3%], RT: 6% [3%], and END: 5% [3%]) fat-free mass. Conclusions: Twelve weeks of RT, END, or CONC significantly modified BFlh architecture. This study suggests that conventional resistance training may dampen BFlh fascicle shortening from cycling training while increasing strength simultaneously in concurrent training. Furthermore, the inclusion of a cycle endurance training stimulus may result in alterations to hamstring architecture that increase the risk of future injury. Therefore, the incorporation of endurance cycling training within concurrent training paradigms should be reevaluated when trying to modulate injury risk.

Restricted access

Benjamin Drury, Thomas Green, Rodrigo Ramirez-Campillo and Jason Moran

Purpose: This study examined the effects of a 6-week Nordic hamstring exercise (NHE) program in youth male soccer players of less mature (pre–peak height velocity [PHV]) or more mature (mid/post-PHV) status. Methods: Forty-eight participants were separated into pre-PHV (11.0 [0.9] y) or mid/post-PHV (13.9 [1.1]) groups and further divided into experimental (EXP) and control groups with eccentric hamstring strength assessed (NordBord) both before and after the training program. Participants in the EXP groups completed a periodized NHE program performed once or twice weekly over a 6-week period. Results: The NHE program resulted in moderate and small increases in relative eccentric hamstring strength (in newtons per kilogram) in the pre-PHV EXP (d = 0.83 [0.03–1.68]) and mid-PHV EXP (d = 0.53 [−0.06 to 1.12]) groups, respectively. Moderate increases in the same measure were also seen in the between-groups analyses in the pre-PHV (d = 1.03 [0.23–1.84]) and mid-PHV (d = 0.87 [0.22–1.51]) groups, with a greater effect observed in the former. Conclusion: The results from this study demonstrate that a 6-week NHE program can improve eccentric hamstring strength in male youth soccer players, with less-mature players achieving mostly greater benefits. The findings from this study can aid in the training prescription of NHE in youth male soccer players.