Browse

You are looking at 101 - 110 of 397 items for :

  • Sport and Exercise Science/Kinesiology x
  • User-accessible content x
Clear All
Open access

Ina Garthe and Ronald J. Maughan

In elite sport, where opponents are evenly matched, small factors can determine the outcome of sporting contests. Not all athletes know the value of making wise nutrition choices, but anything that might give a competitive edge, including dietary supplements, can seem attractive. Between 40% and 100% of athletes typically use supplements, depending on the type of sport, level of competition, and the definition of supplements. However, unless the athlete has a nutrient deficiency, supplementation may not improve performance and may have a detrimental effect on both performance and health. Dietary supplements are classified as a subcategory of food, so manufacturers are not required to provide evidence of product safety and efficacy, nor obtain approval from regulatory bodies before marketing supplements. This creates the potential for health risks, and serious adverse effects have been reported from the use of some dietary supplements. Athletes who compete in sports under an anti-doping code must also realize that supplement use exposes them to a risk of ingesting banned substances or precursors of prohibited substances. Government systems of regulations do not include specific laboratory testing for banned substances according to the WADA list, so a separate regulatory framework to evaluate supplements for their risk of provoking a failed doping test is needed. In the high-performance culture typical of elite sport, athletes may use supplements regardless of possible risks. A discussion around medical, physiological, cultural, and ethical questions may be warranted to ensure that the athlete has the information needed to make an informed choice.

Open access

Eric S. Rawson, Mary P. Miles and D. Enette Larson-Meyer

Some dietary supplements are recommended to athletes based on data that supports improved exercise performance. Other dietary supplements are not ergogenic per se, but may improve health, adaptation to exercise, or recovery from injury, and so could help athletes to train and/or compete more effectively. In this review, we describe several dietary supplements that may improve health, exercise adaptation, or recovery. Creatine monohydrate may improve recovery from and adaptation to intense training, recovery from periods of injury with extreme inactivity, cognitive processing, and reduce severity of or enhance recovery from mild traumatic brain injury (mTBI). Omega 3-fatty acid supplementation may also reduce severity of or enhance recovery from mTBI. Replenishment of vitamin D insufficiency or deficiency will likely improve some aspects of immune, bone, and muscle health. Probiotic supplementation can reduce the incidence, duration, and severity of upper respiratory tract infection, which may indirectly improve training or competitive performance. Preliminary data show that gelatin and/or collagen may improve connective tissue health. Some anti-inflammatory supplements, such as curcumin or tart cherry juice, may reduce inflammation and possibly delayed onset muscle soreness (DOMS). Beta-hydroxy beta-methylbutyrate (HMB) does not consistently increase strength and/or lean mass or reduce markers of muscle damage, but more research on recovery from injury that includes periods of extreme inactivity is needed. Several dietary supplements, including creatine monohydrate, omega 3-fatty acids, vitamin D, probiotics, gelatin, and curcumin/tart cherry juice could help athletes train and/or compete more effectively.

Open access

In the article by Gough, L.A., Rimmer, S., Osler, C.J., & Higgins, M.F. (2017). Ingestion of sodium bicarbonate (NaHCO3) following a fatiguing bout of exercise accelerates postexercise acid-base balance recovery and improves subsequent high-intensity cycling time to exhaustion, International Journal of Sport Nutrition and Exercise Metabolism, 27(5), 429–438, doi:10.1123/ijsnem.2017-0065, we did not accurately reflect several content and layout corrections which were needed.

These include:

  1. (a)The key for Figure 1 was erroneously included for Figure 3 (and not for Figure 1).
  2. (b)The abbreviation for PRE was missing from the Figure 1 key.
  3. (c)Figure 3 contained two indicators (+) which were not necessary.

The online version of this article has been corrected. We sincerely apologize for these errors.

Open access

Peter Peeling, Martyn J. Binnie, Paul S.R. Goods, Marc Sim and Louise M. Burke

A strong foundation in physical conditioning and sport-specific experience, in addition to a bespoke and periodized training and nutrition program, are essential for athlete development. Once these underpinning factors are accounted for, and the athlete reaches a training maturity and competition level where marginal gains determine success, a role may exist for the use of evidence-based performance supplements. However, it is important that any decisions surrounding performance supplements are made in consideration of robust information that suggests the use of a product is safe, legal, and effective. The following review focuses on the current evidence-base for a number of common (and emerging) performance supplements used in sport. The supplements discussed here are separated into three categories based on the level of evidence supporting their use for enhancing sports performance: (1) established (caffeine, creatine, nitrate, beta-alanine, bicarbonate); (2) equivocal (citrate, phosphate, carnitine); and (3) developing. Within each section, the relevant performance type, the potential mechanisms of action, and the most common protocols used in the supplement dosing schedule are summarized.

Open access

International Olympic Committee Expert Group on Dietary Supplements in Athletes

Open access

Ronald J. Maughan, Louise M. Burke, Jiri Dvorak, D. Enette Larson-Meyer, Peter Peeling, Stuart M. Phillips, Eric S. Rawson, Neil P. Walsh, Ina Garthe, Hans Geyer, Romain Meeusen, Luc van Loon, Susan M. Shirreffs, Lawrence L. Spriet, Mark Stuart, Alan Vernec, Kevin Currell, Vidya M. Ali, Richard G.M. Budgett, Arne Ljungqvist, Margo Mountjoy, Yannis Pitsiladis, Torbjørn Soligard, Uğur Erdener and Lars Engebretsen

Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete’s health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete’s health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.

Open access

Ronald J. Maughan, Susan M. Shirreffs and Alan Vernec

The use of dietary supplements is widespread among athletes in all sports and at all levels of competition, as it is in the general population. For the athlete training at the limits of what is sustainable, or for those seeking a shortcut to achieving their aims, supplements offer the prospect of bridging the gap between success and failure. Surveys show, however, that this is often not an informed choice and that the knowledge level among consumers is often low and that they are often influenced in their decisions by individuals with an equally inadequate understanding of the issues at stake. Supplement use may do more harm than good, unless it is based on a sound analysis of the evidence. Where a deficiency of an essential nutrient has been established by appropriate investigations, supplementation can provide a rapid and effective correction of the problem. Supplements can also provide a convenient and time-efficient solution to achieving the necessary intake of key nutrients such as protein and carbohydrate. Athletes contemplating the use of supplements should consider the potential for both positive and negative outcomes. Some ergogenic supplements may be of benefit to some athletes in some specific contexts, but many are less effective than is claimed. Some may be harmful to health of performance and some may contain agents prohibited by anti-doping regulations. Athletes should make informed choices that maximize the benefits while minimizing the risks.

Open access

Louise M. Burke and Peter Peeling

Many expert sporting bodies now support a pragmatic acceptance of the use of performance supplements which have passed a risk:benefit analysis of being safe, effective, and permitted for use, while also being appropriate to the athlete’s age and maturation in their sport. However, gaining evidence of the performance benefits of these supplements is a process challenged by the scarcity of research in relation to the number of available products, and the limitations of the poor quality of some studies. While meta-analyses and systematic reviews can help to provide information about the general use of performance supplements, the controlled scientific trial provides the basis on which these reviews are undertaken, as well as an opportunity to address more specific questions about supplement applications. Guidelines for the design of studies include the choice of well-trained athletes who are familiarized with performance tasks that have been chosen on their basis of their known reliability and validity. Supplement protocols should be chosen to maximize the likely benefits, and researchers should also make efforts to control confounding variables, while keeping conditions similar to real-life practices. Performance changes should be interpreted in light of what is meaningful to the outcomes of sporting competition. Issues that have been poorly addressed to date include the use of several supplements in combination and the use of the same supplement over successive events, both within a single, and across multiple competition days. Strategies to isolate and explain the variability of benefits to individuals are also a topic for future investigation.

Open access

Romain Meeusen and Lieselot Decroix

Cognitive function plays an important role in athletic performance, and it seems that brain functioning can be influenced by nutrition and dietary components. Thus, the central nervous system might be manipulated through changes in diet or supplementation with specific nutrients including branched-chain amino acids, tyrosine, carbohydrates, and caffeine. Despite some evidence that branched-chained amino acids can influence ratings of perceived exertion and mental performance, several well-controlled studies have failed to demonstrate a positive effect on exercise performance. Evidence of an ergogenic benefit of tyrosine supplementation during prolonged exercise is limited. There is evidence that mild dehydration can impair cognitive performance and mood. The beneficial effect of carbohydrate supplementation during prolonged exercise could relate to increased substrate delivery for the brain, with numerous studies indicating that hypoglycemia affects brain function and cognitive performance. Caffeine can enhance performance and reduce perception of effort during prolonged exercise and will influence specific reward centers of the brain. Plant products and herbal extracts such as polyphenols, ginseng, ginkgo biloba, etc. are marketed as supplements to enhance performance. In several animal studies, positive effects of these products were shown, however the literature on their effects on sports performance is scarce. Polyphenols have the potential to protect neurons against injury induced by neurotoxins, suppress neuroinflammation, and to promote memory, learning, and cognitive function. In general, there remains a need for controlled randomized studies with a strong design, sufficient statistical power, and well-defined outcome measures before “claims” on its beneficial effects on brain functioning can be established.