You are looking at 131 - 140 of 972 items for :

  • User-accessible content x
Clear All
Open access

Sathvik Namburar, William Checkley, Oscar Flores-Flores, Karina M. Romero, Katherine Tomaino Fraser, Nadia N. Hansel, Suzanne L. Pollard and GASP Study Investigators

Background: The authors sought to examine physical activity patterns among children with and without asthma in 2 peri-urban communities in Lima, Peru, to identify socioeconomic and demographic risk factors for physical inactivity and examine the relationship between asthma and physical activity. Methods: The authors measured mean steps per day in 114 children (49 with asthma and 65 without) using pedometers worn over a 1-week period. They also used the 3-day physical activity recall to determine the most common activities carried out by children. Results: The authors found that 84.2% of the children did not meet the daily international physical activity recommendations. Girls took significantly fewer mean steps per day as compared with boys (2258 fewer steps, 95% confidence interval, 1042–3474), but no other factors, including asthma status, showed significant differences in the mean daily steps. Mean daily steps were positively associated with higher socioeconomic status among girls, and current asthma had a larger inverse effect on daily steps in boys when compared with girls. Conclusion: Physical activity levels were below recommended guidelines in all children. There is a need for policy and neighborhood-level interventions to address low physical activity levels among Peruvian youth. Special focus should be given to increasing the physical activity levels in girls.

Open access

Robert J. Gregor

Open access

Christopher C. Moore, Aston K. McCullough, Elroy J. Aguiar, Scott W. Ducharme and Catrine Tudor-Locke

Background: The authors conducted a scoping review as a first step toward establishing harmonized (ie, consistent and compatible), empirically based best practices for validating step-counting wearable technologies. Purpose: To catalog studies validating step-counting wearable technologies during treadmill ambulation. Methods: The authors searched PubMed and SPORTDiscus in August 2019 to identify treadmill-based validation studies that employed the criterion of directly observed (including video recorded) steps and cataloged study sample characteristics, protocol details, and analytical procedures. Where reported, speed- and wear location–specific mean absolute percentage error (MAPE) values were tabulated. Weighted median MAPE values were calculated by wear location and a 0.2-m/s speed increment. Results: Seventy-seven eligible studies were identified: most had samples averaging 54% (SD = 5%) female and 27 (5) years of age, treadmill protocols consisting of 3 to 5 bouts at speeds of 0.8 (0.1) to 1.6 (0.2) m/s, and reported measures of bias. Eleven studies provided MAPE values at treadmill speeds of 1.1 to 1.8 m/s; their weighted median MAPE values were 7% to 11% for wrist-worn, 1% to 4% for waist-worn, and ≤1% for thigh-worn devices. Conclusions: Despite divergent study methodologies, the authors identified common practices and summarized MAPE values representing device step-count accuracy during treadmill walking. These initial empirical findings should be further refined to ultimately establish harmonized best practices for validating wearable technologies.

Full access

James L. Farnsworth II, Todd Evans, Helen Binkley and Minsoo Kang

Context: Previous research suggests that several knee-specific patient-reported outcome measures have poor measurement properties. The patient-reported outcomes knee assessment tool (PROKAT) was created to improve assessment of knee-specific function. Examination of the measurement properties of this new measure is critical to determine its clinical value. Objective: Examine the measurement properties of the PROKAT. Design: Cross-sectional study. Setting: Clinical athletic training setting. Patients or Other Participants: The pilot study included 32 student-athletes (mean age = 20.78 [1.01], males = 56.30%). The full study included 203 student-athletes (mean age = 21.46 [4.64], males = 54.70%) from 3 separate institutions. The participants were recruited for both the pilot and full study using face-to-face and electronic (eg, email and social media sites) communications. Intervention(s): Evaluation of the measurement properties of the PROKAT occurred using the Rasch partial-credit model. Main Outcome Measures: Infit and outfit statistics, item step difficulties, person ability parameters, category function, item and test information functions, and Cronbach alpha. An independent samples t test was used to evaluate the differences in injured and noninjured athletes’ scores. Results: The Rasch partial-credit model analysis of pilot test items and qualitative participant feedback were used to modify the initial PROKAT. Evaluation of the revised PROKAT (32 items) indicated 27 items had acceptable model–data fit. The injured athletes scored significantly worse than the noninjured athletes (t 188 = 12.89; P < .01). The ceiling effects for the PROKAT were minimal (3.9%). Conclusions: A major advantage of this study was the use of the Rasch measurement and the targeted population. Compared with alternative knee-specific patient-reported outcome measures (eg, Knee Injury Osteoarthritis Outcome Score, International Knee Documentation Committee Subjective Knee Form), the PROKAT has low ceiling effects in athletic populations. In addition, evidence suggests the measure may be capable of distinguishing between injured and noninjured athletes.

Open access

Brett D. Tarca, Thomas P. Wycherley, Anthony Meade, Paul Bennett and Katia E. Ferrar

Context: Abdominal musculature underpins core stability, which can allow for optimal performance in many activities of daily living (eg, walking and rising from a chair). Therefore, assessment of the abdominal muscles poses as an important consideration for clinicians in order to identify people at risk of injury or functional decline. Objective: This study aimed to build on the limited amount of knowledge surrounding abdominal muscle strength assessments by investigating the validity and reliability of hand-held dynamometry (HHD) for the assessment of isometric abdominal flexion strength. Study Design and Participants: Comparative analysis for validity and test–retest reliability was employed on a cohort of apparently healthy individuals. HHD was compared with the criterion, isokinetic dynamometry, through an isometric contraction of trunk flexion on both instruments. Hand-held dynamometry assessments only were performed on a subsequent day for reliability analysis. The peak values for all assessments were recorded. Results: A total of 35 participants were recruited from the University of South Australia and the general public. Comparative analysis between the HHD and isokinetic dynamometer showed good agreement (intraclass correlation coefficients = .82), with the Bland–Altman plots confirming no proportional bias. Reliability analysis for the HHD reported good consistency (intraclass correlation coefficients = .87). Conclusion: HHD together with the participant setup (supine, trunk flexed, and supported at 25° with the legs horizontal and remaining unfixed) is a valid and reliable tool to assess isometric abdominal flexion strength.

Open access

James P. Fletcher, James David Taylor, Chris A. Carroll and M. Blake Richardson

Context: An accurate assessment of lumbar spine active range of motion (AROM) is clinically important. Dual inclinometry is recommended as the optimal technique for measuring lumbar flexion AROM; however, the procedures differ in the literature. Objective: To compare 2 different handheld digital dual inclinometry (HDDI) techniques for evaluating lumbar flexion AROM. Design: The study was a repeated-measures design consisting of 2 trials. Setting: Laboratory. Participants: A sample of 69 adult volunteers (28 men and 41 women; mean age 23.8 [2.4] y) without pain or injury to their back, hips, or abdomen for at least 3 months participated in the study. Intervention: Using standardized methods, 1 trained tester performed 2 different HDDI measurements of standing lumbar flexion AROM on each subject. Each subject performed one repetition of AROM lumbar flexion per HDDI measurement. The HDDI measures differed in the process for placing the upper inclinometer, with one technique identifying the upper landmark by skilled palpation of the T12 spinous process and the other technique by measuring 15-cm cephalad to the S2 region landmark to approximate the location of the T12 spinous process. Main Outcome Measures: A dependent t test, Pearson correlation coefficient (r), the 95% limits of agreement, and Bland–Altman plots were used to examine agreement between the techniques. Results: Dependent t testing showed no significant differences between the techniques (mean difference = 1.2°, P = .11). A strong correlation existed between the 2 HDDI techniques (r = .80, P < .001). The Bland–Altman plot illustrated that 64 of the 69 data points were within the 95% limits of agreement for the 2 techniques. Conclusions: The findings suggest that HDDI measurements of lumbar flexion AROM are comparable when using either of the 2 HDDI techniques described. Clinicians can make an evidence-based choice for using either method of measuring lumbar flexion AROM.