Browse

You are looking at 151 - 160 of 919 items for :

  • User-accessible content x
Clear All
Open access

Ignacio Perez-Pozuelo, Thomas White, Kate Westgate, Katrien Wijndaele, Nicholas J. Wareham and Soren Brage

Background: Wrist-worn accelerometry is the commonest objective method for measuring physical activity in large-scale epidemiological studies. Research-grade devices capture raw triaxial acceleration which, in addition to quantifying movement, facilitates assessment of orientation relative to gravity. No population-based study has yet described the interrelationship and variation of these features by time and personal characteristics. Methods: 2,043 United Kingdom adults (35–65 years) wore an accelerometer on the non-dominant wrist and a chest-mounted combined heart-rate-and-movement sensor for 7 days free-living. From raw (60 Hz) wrist acceleration, we derived movement (non-gravity acceleration) and pitch and roll (forearm) angles relative to gravity. We inferred physical activity energy expenditure (PAEE) from combined sensing and sedentary time from approximate horizontal arm angle coupled with low movement. Results: Movement differences by time-of-day and day-of-week were associated with forearm angles; more movement in downward forearm positions. Mean (SD) movement was similar between sexes ∼31 (42) mg, despite higher PAEE in men. Women spent longer with the forearm pitched >0°, above horizontal (53% vs 36%), and less time at <0° (37% vs 53%). Diurnal pitch was 2.5–5° above and 0–7.5°below horizontal during night and daytime, respectively; corresponding roll angles were ∼0° (hand flat) and ∼20° (thumb-up). Differences were more pronounced in younger participants. All diurnal profiles indicated later wake-times on weekends. Daytime pitch was closer to horizontal on weekdays; roll was similar. Sedentary time was higher (17 vs 15 hours/day) in obese vs normal-weight individuals. Conclusions: More movement occurred in forearm positions below horizontal, commensurate with activities including walking. Findings suggest time-specific population differences in behaviors by age, sex, and BMI.

Open access

Kailin C. Parker, Rachel R. Shelton and Rebecca M. Lopez

Clinical Scenario: In the last few years, there have been several studies examining alternative cooling strategies in the treatment of exertional heat stroke (EHS). Morbidity and mortality with EHS are associated with how long the patient’s core body temperature remains above the critical threshold of 40.5°C. Although cold-water immersion (CWI) is the gold standard of treatment when cooling a patient with EHS, more recent alternative cooling techniques have been examined for use in settings where CWI may not be feasible (ie, remote locations). Clinical Question: Do alternative cooling methods have effective core body temperature cooling rates for hyperthermia compared with previously established CWI cooling rates? Summary of Key Findings: The authors searched for studies using alternative cooling methods to cool hyperthermic individuals. To be included, the studies needed a PEDro score ≥6 and a level of evidence ≥2. They found 9 studies related to our focused clinical question; of these, 5 studies met the inclusion criteria. The cooling rates for hand cooling, cold-water shower, and ice-sheet cooling were 0.03°C/min, 0.08°C/min, and 0.06°C/min, respectively, whereas the tarp-assisted cooling with oscillation (TACO) method was the only method that had an acceptable cooling rate (range 0.14–0.17°C/min). Clinical Bottom Line: When treating EHS, if CWI is not available, the tarp-assisted cooling method may be a reasonable alternative. Clinicians should not use cold shower, hand cooling, or ice-sheet cooling if better cooling methods are available. Clinicians should always use CWI when available. Strength of Recommendation: Five level 2 studies with PEDro scores ≥6 suggest the TACO method is the only alternative cooling method that decreases core body temperature at a similar, though slower, rate of CWI. Hand cooling, cold showering, and ice-sheet cooling do not decrease core body temperature at an appropriate rate and should not be used in EHS situations if a modality with a better cooling rate is available.

Open access

Nicholas Hattrup, Hannah Gray, Mark Krumholtz and Tamara C. Valovich McLeod

Clinical Scenario: Recent systematic reviews have shown that extended rest may not be beneficial to patients following concussion. Furthermore, recent evidence has shown that patient with postconcussion syndrome benefit from an active rehabilitation program. There is currently a gap between the ability to draw conclusions to the use of aerobic exercise during the early stages of recovery along with the safety of these programs. Clinical Question: Following a concussion, does early controlled aerobic exercise, compared with either usual care or delayed exercise, improve recovery as defined by symptom duration and severity? Summary of Key Findings: After a thorough literature search, 5 studies relevant to the clinical question were selected. Of the 5 studies, 1 study was a randomized control trial, 2 studies were pilot randomized controlled trials, and 2 studies were retrospective. All 5 studies showed that implementing controlled aerobic exercise did not have an adverse effect on recovery. One study showed early aerobic exercise had a quicker return to school, and another showed a 2-day decrease in symptom duration. Clinical Bottom Line: There is sufficient evidence to suggest that early controlled aerobic exercise is safe following a concussion. Although early aerobic exercise may not always result in a decrease in symptom intensity and duration, it may help to improve the psychological state resulting from the social isolation of missing practices and school along with the cessation of exercise. Although treatments continue to be a major area of research following concussion, management should still consist of an interdisciplinary approach to individualized patient care. Strength of Recommendation: There is grade B evidence to support early controlled aerobic exercise may reduce the duration of symptoms following recovery while having little to no adverse events.

Open access

Kimmery Migel and Erik Wikstrom

Clinical Scenario: Approximately 30% of all first-time patients with LAS develop chronic ankle instability (CAI). CAI-associated impairments are thought to contribute to aberrant gait biomechanics, which increase the risk of subsequent ankle sprains and the development of posttraumatic osteoarthritis. Alternative modalities should be considered to improve gait biomechanics as impairment-based rehabilitation does not impact gait. Taping and bracing have been shown to reduce the risk of recurrent ankle sprains; however, their effects on CAI-associated gait biomechanics remain unknown. Clinical Question: Do ankle taping and bracing modify gait biomechanics in those with CAI? Summary of Key Findings: Three case-control studies assessed taping and bracing applications including kinesiotape, athletic tape, a flexible brace, and a semirigid brace. Kinesiotape decreased excessive inversion in early stance, whereas athletic taping decreased excessive inversion and plantar flexion in the swing phase and limited tibial external rotation in terminal stance. The flexible and semirigid brace increased dorsiflexion range of motion, and the semirigid brace limited plantar flexion range of motion at toe-off. Clinical Bottom Line: Taping and bracing acutely alter gait biomechanics in those with CAI. Strength of Recommendation: There is limited quality evidence (grade B) that taping and bracing can immediately alter gait biomechanics in patients with CAI.

Open access

Emma L. Sweeney, Daniel J. Peart, Irene Kyza, Thomas Harkes, Jason G. Ellis and Ian H. Walshe

Experimental sleep restriction (SR) has demonstrated reduced insulin sensitivity in healthy individuals. Exercise is well-known to be beneficial for metabolic health. A single bout of exercise has the capacity to increase insulin sensitivity for up to 2 days. Therefore, the current study aimed to determine if sprint interval exercise could attenuate the impairment in insulin sensitivity after one night of SR in healthy males. Nineteen males were recruited for this randomized crossover study which consisted of four conditions—control, SR, control plus exercise, and sleep restriction plus exercise. Time in bed was 8 hr (2300–0700) in the control conditions and 4 hr (0300–0700) in the SR conditions. Conditions were separated by a 1-week entraining period. Participants slept at home, and compliance was assessed using wrist actigraphy. Following the night of experimental sleep, participants either conducted sprint interval exercise or rested for the equivalent duration. An oral glucose tolerance test was then conducted. Blood samples were obtained at regular intervals for measurement of glucose and insulin. Insulin concentrations were higher in SR than control (p = .022). Late-phase insulin area under the curve was significantly lower in sleep restriction plus exercise than SR (862 ± 589 and 1,267 ± 558; p = .004). Glucose area under the curve was not different between conditions (p = .207). These findings suggest that exercise improves the late postprandial response following a single night of SR.

Open access

Matthew Pearce, Tom R.P. Bishop, Stephen Sharp, Kate Westgate, Michelle Venables, Nicholas J. Wareham and Søren Brage

Harmonization of data for pooled analysis relies on the principle of inferential equivalence between variables from different sources. Ideally, this is achieved using models of the direct relationship with gold standard criterion measures, but the necessary validation study data are often unavailable. This study examines an alternative method of network harmonization using indirect models. Starting methods were self-report or accelerometry, from which we derived indirect models of relationships with doubly labelled water (DLW)-based physical activity energy expenditure (PAEE) using sets of two bridge equations via one of three intermediate measures. Coefficients and performance of indirect models were compared to corresponding direct models (linear regression of DLW-based PAEE on starting methods). Indirect model beta coefficients were attenuated compared to direct model betas (10%–63%), narrowing the range of PAEE values; attenuation was greater when bridge equations were weak. Directly and indirectly harmonized models had similar error variance but most indirectly derived values were biased at group-level. Correlations with DLW-based PAEE were identical after harmonization using continuous linear but not categorical models. Wrist acceleration harmonized to DLW-based PAEE via combined accelerometry and heart rate sensing had the lowest error variance (24.5%) and non-significant mean bias 0.9 (95%CI: −1.6; 3.4) kJ·day−1·kg−1. Associations between PAEE and BMI were similar for directly and indirectly harmonized values, but most fell outside the confidence interval of the criterion PAEE-to-BMI association. Indirect models can be used for harmonization. Performance depends on the measurement properties of original data, variance explained by available bridge equations, and similarity of population characteristics.

Open access

Melanna F. Cox, Greg J. Petrucci Jr., Robert T. Marcotte, Brittany R. Masteller, John Staudenmayer, Patty S. Freedson and John R. Sirard

Purpose: Develop a direct observation (DO) system to serve as a criterion measure for the calibration of models applied to free-living (FL) accelerometer data. Methods: Ten participants (19.4 ± 0.8 years) were video-recorded during four, one-hour FL sessions in different settings: 1) school, 2) home, 3) community, and 4) physical activity. For each setting, 10-minute clips from three randomly selected sessions were extracted and coded by one expert coder and up to 20 trained coders using the Observer XT software (Noldus, Wageningen, the Netherlands). The coder defines each whole-body movement which was further described with three modifiers: 1) locomotion, 2) activity type, and 3) MET value (used to categorize intensity level). Percent agreement was calculated for intra- and inter-rater reliability. For intra-rater reliability, the criterion coder coded all 12 clips twice, separated by at least one week between coding sessions. For inter-rater reliability, coded clips by trained coders were compared to the expert coder. Intraclass correlations (ICCs) were calculated to assess the agreement of intensity category for intra- and inter-rater comparisons described above. Results: For intra-rater reliability, mean percent agreement ranged from 91.9 ± 3.9% to 100.0 ± 0.0% across all variables in all settings. For inter-rater reliability, mean percent agreement ranged from 88.2 ± 3.5% to 100.0 ± 0.0% across all variables in all settings. ICCs for intensity category ranged from 0.74–1.00 and 0.81–1.00 for intra- and inter-rater comparisons, respectively. Conclusion: The DO system is reliable and feasible to serve as a criterion measure of FL physical activity in young adults to calibrate accelerometers, subsequently improving interpretation of surveillance and intervention research.