Browse

You are looking at 11 - 20 of 83 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: Content accessible to me x
Clear All
Full access

Samuel E. Masters and John H. Challis

Soft tissue moves relative to the underlying bone during locomotion. Research has shown that soft tissue motion has an effect on aspects of the dynamics of running; however, little is known about the effects of soft tissue motion on the joint kinetics. In the present study, for a single subject, soft tissue motion was modeled using wobbling components in an inverse dynamics analysis to access the effects of the soft tissue on joint kinetics at the knee and hip. The added wobbling components had little effect on the knee joint kinetics, but large effects on the hip joint kinetics. In particular, the hip joint power and net negative and net positive mechanical work at the hip was greatly underestimated when calculated with the model without wobbling components compared with that of the model with wobbling components. For example, for low-frequency wobbling conditions, the magnitude of the peak hip joint moments were 50% greater when computed accounting the wobbling masses compared with a rigid body model, while for high-frequency wobbling conditions, the peaks were within 15%. The present study suggests that soft tissue motion should not be ignored during inverse dynamics analyses of running.

Full access

Hamid Norasi, Jordyn Koenig, and Gary A. Mirka

The electromyographic (EMG) normalization (often to maximum voluntary isometric contraction [MVIC]) is used to control for interparticipant and day-to-day variations. Repeated MVIC exertions may be inadvisable from participants’ safety perspective. This study developed a technique to predict the MVIC EMG from submaximal isometric voluntary contraction EMG. On day 1, 10 participants executed moment exertions of 100%, 60%, 40%, and 20% of the maximum (biceps brachii, rectus femoris, neck flexors, and neck extensors) as the EMG data were collected. On day 2, the participants replicated the joint moment values from day 1 (60%, 40%, and 20%) and also performed MVIC exertions. Using the ratios between the MVIC EMGs and submaximal isometric voluntary contraction EMG data values established on day 1, and the day 2 submaximal isometric voluntary contraction EMG data values, the day 2 MVIC EMGs were predicted. The average absolute percentage error between the predicted and actual MVIC EMG values for day 2 were calculated: biceps brachii, 45%; rectus femoris, 27%; right and left neck flexors, 27% and 33%, respectively; and right and left neck extensors, both 29%. There will be a trade-off between the required accuracy of the MVIC EMG and the risk of injury due to exerting actual MVIC. Thus, using the developed predictive technique may depend on the study circumstances.

Open access

Lewis King, SarahJane Cullen, Jean McArdle, Adrian McGoldrick, Jennifer Pugh, Giles Warrington, and Ciara Losty

A large proportion of jockeys report symptoms associated with mental health difficulties (MHDs), yet most do not seek help from professional mental health support services. Due to the paucity of literature in this field, this study sought to explore jockeys’ barriers to, and facilitators of, help-seeking for MHDs. Twelve jockeys participated in semistructured interviews, subsequently analyzed via reflexive thematic analysis. Barriers to help-seeking included the negative perceptions of others (stigma and career implications), cultural norms (masculinity and self-reliance), and low mental health literacy (not knowing where to seek help, minimization of MHDs, negative perceptions of treatment, and recognizing symptoms). Facilitators to help-seeking included education (exposure to psychological support at a younger age), social support (from professionals, jockeys, family, and friends), and media campaigns (high-profile disclosures from jockeys). Findings are consistent with barrier and facilitator studies among general and athletic populations. Applied recommendations and future research considerations are presented throughout the manuscript.

Open access

Laura Duval, Lei Zhang, Anne-Sophie Lauzé, Yu Q. Zhu, Dorothy Barthélemy, Numa Dancause, Mindy F. Levin, and Anatol G. Feldman

We tested the hypothesis that the ipsilateral corticospinal system, like the contralateral corticospinal system, controls the threshold muscle length at which wrist muscles and the stretch reflex begin to act during holding tasks. Transcranial magnetic stimulation was applied over the right primary motor cortex in 21 healthy subjects holding a smooth or coarse block between the hands. Regardless of the lifting force, motor evoked potentials in right wrist flexors were larger for the smooth block. This result was explained based on experimental evidence that motor actions are controlled by shifting spatial stretch reflex thresholds. Thus, the ipsilateral corticospinal system is involved in threshold position control by modulating facilitatory influences of hand skin afferents on motoneurons of wrist muscles during bimanual object manipulation.

Full access

Benno M. Nigg

Dr. Richard Nelson contributed to the development of sport biomechanics by being an international facilitator. Together with Dr. Jürg Wartenweiler, he contributed the necessary support and input that allowed the field of Movement and Sports Biomechanics to develop and flourish.

Full access

Robert Shapiro

The author recalls his initial introduction to the field of biomechanics in the Penn State Biomechanics Laboratory, known as the Water Tower, and its positive and profound effect on his lifetime career. Under the directorship of Dr. Richard Nelson, Penn State’s biomechanics program provided the author with a variety of both professional and personal learning opportunities. The author credits these experiences as having a direct relationship to his successful development as teacher, mentor, and researcher.

Full access

Robert W. Norman, Stuart M. McGill, and James R. Potvin

Dr. Richard Nelson is internationally acknowledged in many countries as an extremely important leader in the emergence of biomechanics of human movement as a respected scientific discipline. As his PhD graduates, and, subsequently, their graduates, have become faculty members at many universities, Dr. Nelson’s influence has grown for more than 50 years via several generations of his biomechanics “children.” It was probably never known to him that he also had significant influence on all laboratory-based subdisciplines of the undergraduate and graduate education and faculty research programs of the then new (1967) Department of Kinesiology at the University of Waterloo, Canada. The teaching and research programs included not only biomechanics but also exercise and work physiology, anatomy, biochemistry, and neurophysiology of human movement.