Browse

You are looking at 11 - 20 of 274 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Kyndell R. Crowell, Ryan D. Nokes, and Nicole L. Cosby

Clinical Scenario: Dynamic knee valgus (DKV) is a mechanical alteration in the knee that leads to increased risk of injury. Weakness of hip musculature in hip abduction (HABD), extension (HEXT), and external rotation (HER) may contribute to increased DKV in single-leg landing tasks. Focused Clinical Question: Is decreased hip strength associated with an increase in DKV during a single-leg landing task in collegiate female athletes? Summary of Key Findings: Three studies were included: One randomized control trial (RCT), one cohort study, and one case-control. All three studies found that decreases in HABD and HER strength contributed to increased DKV during single-leg landing tasks. One study also found that the hip extensors contribute to controlling hip adduction, a common factor in many mechanisms of injuries. These three studies recommended strengthening HABD, HEXT, and HER to decrease DKV and reduce the risk of injury at the knee. Clinical Bottom Line: Weak HABD, HEXT, and HER contribute to increased DKV in college female athletes, but strengthening HABD, HEXT, and HER can lead to decreases in DKV and, overall, reduce the risk of injury at the knee. Strength of Recommendation: These articles were graded with a level of evidence of III or higher, giving a grade of B strength of recommendation that weak HABD, HEXT, and HER are associated with increased DKV in collegiate female athletes.

Open access

Ling Zhang, Shao-bai Wang, Shuai Fan, Jiling Ye, and Bin Cai

Context: Performance in strength and assessment of patellar tracking is important for patients with arthrofibrosis after anterior cruciate ligament (ACL) reconstruction. Objective: The study was to examine the difference of patellofemoral kinematics between the affected and the contralateral limb and to evaluate the relationship between knee extensor strength and patellofemoral kinematics in patients with arthrofibrosis after ACL reconstruction. Design: Cohort study (diagnosis); level of evidence, 3. Setting: Laboratory. Patients: A prospective cohort of 20 patients with arthrofibrosis after ACL reconstruction was recruited. Interventions: A total of 20 patients who underwent arthroscopic reconstruction of the double-bundle ACL with a hamstring tendon autograft received standardized patellofemoral kinematics testing and knee extensor strength testing within 6 months after primary ACL reconstruction. Computed tomography and dual fluoroscopic imaging were used to evaluate in vivo patellofemoral kinematics of affected and contralateral knees during a lunge task. Knee extensor mechanism strength was measured using a handheld dynamometer. Main Outcome Measures: A limb symmetry index of knee strength and patellar mobility was calculated and satisfactory performance defined as ≥90%. Results: There was a statistically significant decrease in the range of patellar inferior shift (P = .020; d = 0.81), flexion (P = .026; d = 0.95), lateral tilt (P = .001; d = 1.04), and lateral rotation (P < .001; d = 0.89) in the affected knee compared with the contralateral knee from 15° to 75° of knee flexion. There was a strong positive linear correlation between knee extensor strength and patellar inferior shift (r = .747; P = .008). A knee extensor strength limb symmetry index <90% was 89% sensitive and 9% specific for limited patellar inferior shift. Conclusions: Patients with arthrofibrosis after ACL reconstruction presented decreased patellar mobility in the arthrofibrotic knee compared with the contralateral knee. The strong correlation between knee extensor strength and patellar inferior shift of the arthrofibrotic knee demonstrates the importance of knee extensor strength in the diagnosis and treatment of patients with knee arthrofibrosis. The knee extensor mechanism strength has high sensitivity but low specificity in identifying a decrease in patellar inferior shift in patients with arthrofibrosis after ACL reconstruction.

Open access

Jessica Murphy, Karen A. Patte, Philip Sullivan, and Scott T. Leatherdale

The mental health benefits of physical activity may relate more to the context of the behavior, rather than the behavior of being active itself. The association between varsity sport (VS) participation, depression, and anxiety symptoms was explored using data from 70,449 high school students from the Cannabis use, Obesity, Mental health, Physical activity, Alcohol use, Smoking, and Sedentary behavior study. The model adjusted for potential covariates; interactions by sex and participation in outside of school sport (OSS) were explored. Overall, 70% and 24% of respondents met or exceeded cutoff values for depression and anxiety, respectively. Students participating in VS had lower symptoms of anxiety and depression compared with nonparticipants. Results were consistent regardless of OSS participation; associations were strongest among students who participated in both VS and OSS and males. Participation in VS may prove beneficial for the prevention and/or management of depression or anxiety symptoms, particularly among males. An additive beneficial effect of OSS on depression and anxiety scores may exist.

Open access

Michael W. Kirkwood, David R. Howell, Brian L. Brooks, Julie C. Wilson, and William P. Meehan III

While placebo effects are well recognized within clinical medicine, “nocebo effects” have received much less attention. Nocebo effects are problems caused by negative expectations derived from information or treatment provided during a clinical interaction. In this review, we examine how nocebo effects may arise following pediatric concussion and how they may worsen symptoms or prolong recovery. We offer several suggestions to prevent, lessen, or eliminate such effects. We provide recommendations for clinicians in the following areas: terminology selection, explicit and implicit messaging to patients, evidence-based recommendations, and awareness of potential biases during clinical interactions. Clinicians should consider the empirically grounded suggestions when approaching the care of pediatric patients with concussion.

Open access

Jamon Couch, Marc Sayers, and Tania Pizzari

Context: An imbalance between shoulder internal rotation (IR) and external rotation (ER) strength in athletes is proposed to increase the risk of sustaining a shoulder injury. Hand-held (HHD) and externally fixed dynamometry are reliable forms of assessing shoulder IR and ER strength. A new externally fixed device with an attachable fixed upper-limb mold (The ForceFrame) exists; however, its reliability in measuring shoulder strength is yet to be investigated. Objective: To determine the test–retest reliability of the ForceFrame, with and without the fixed upper-limb mold, in the assessment of shoulder IR and ER strength, as compared with HHD. Design: Test–retest reliability study. Setting: Laboratory, clinical. Participants: Twenty-two healthy and active individuals were recruited from the university community and a private physiotherapy practice. Main Outcome Measures: Maximal isometric shoulder IR and ER strength was measured using the ForceFrame and traditional HHD in neutral and at 90° shoulder abduction. Mean (SD) strength measures were calculated. Test–retest reliability was analyzed using intraclass correlation coefficients (3, 1). The SEM and minimal detectable change were calculated. Results: Good to excellent test–retest reliability was found for all shoulder strength tests across HDD and ForceFrame dynamometry (intraclass correlation coefficients [3, 1]  = .854–.916). The minimal detectable changes ranged between 25.61 and 41.84 N across tests. Test–retest reliability was not affected by the dynamometer or testing position. Conclusions: The results from this study indicate that both the ForceFrame and HHD are suitable for measuring shoulder strength in clinical practice. The use of the fixed upper-limb mold with the ForceFrame does not improve reliability.

Open access

Nickolai J.P. Martonick, Ashley J. Reeves, James A. Whitlock, Taylor C. Stevenson, Scott W. Cheatham, Craig P. McGowan, and Russell T. Baker

Context: Instrument-assisted Soft Tissue Mobilization (IASTM) is a therapeutic intervention used by clinicians to identify and treat myofascial dysfunction or pathology. However, little is known about the amount of force used by clinicians during an IASTM treatment and how it compares to reports of force in the current literature. Objective: To quantify the range of force applied by trained clinicians during a simulated IASTM treatment scenario. Design: Experimental. Setting: University research laboratory. Participants: Eleven licensed clinicians (physical therapist = 2, chiropractor = 2, and athletic trainer = 7) with professional IASTM training participated in the study. The participants reported a range of credentialed experience from 1 to 15 years (mean = 7 [4.7] y; median = 6 y). Intervention: Participants performed 15 one-handed unidirectional sweeping strokes with each of the 5 instruments for a total of 75 data points each. Force data were collected from a force plate with an attached skin simulant during a hypothetical treatment scenario. Main Outcome Measures: Peak force and average forces for individual strokes across all instruments were identified. Averages for these forces were calculated for all participants combined, as well as for individual participants. Results: The average of peak forces produced by our sample of trained clinicians was 6.7 N and the average mean forces was 4.5 N. Across individual clinicians, average peak forces ranged from 2.6 to 14.0 N, and average mean forces ranged from 1.6 to 10.0 N. Conclusions: The clinicians in our study produced a broad range of IASTM forces. The observed forces in our study were similar to those reported in prior research examining an IASTM treatment to the gastrocnemius of healthy individuals and greater than what has been reported as effective in treating delayed onset muscle soreness. Our data can be used by researchers examining clinically relevant IASTM treatment force on patient outcomes.

Full access

Shana E. Harrington, Sean McQueeney, and Marcus Fearing

Context: Training loads, injury, and injury prevention in the Para sports population has not been well established. Objective: The purpose of this study was to survey elite-level swimming, cycling, and athletic Para sport athletes in the United States who were competing in the 2016 US Paralympic trials to better understand common injuries among athletes in each sport and to determine whether injury prevention programs were being utilized. Design: Cross-sectional, survey study. Setting: The 2016 US Paralympic trials for swimming, cycling, and athletics. Participants: Athletes who competed in swimming, cycling, and/or athletics at the 2016 US Paralympic trials (N = 144; 83 males and 61 females). Main Outcome Measures: Participants completed electronic survey using Qualtrics XM (Qualtrics, Provo, UT) with questions pertaining to average number of hours trained per week, number of cross-training hours performed each week, descriptive information regarding sport-related injuries, pain, whether athletes received treatment for injuries, and descriptive information regarding whether the athletes had participated in an injury prevention program. Results: Over 64% of respondents reported training greater than or equal to 11 hours per week, and 45% of athletes reported spending greater than or equal to 6 hours per week cross-training. Forty-two percent of athletes reported currently having pain with 34% reporting missing a competition because of injury. Only 24% of respondents reported having participated in an injury prevention program. Conclusions: Many Para sport athletes train at similar durations as able-bodied counterparts and have pain that interferes with their ability to train and compete, however, only a small percentage consistently perform injury prevention programs.

Full access

Soo-Yong Kim, Jae-Seop Oh, and Min-Hyeok Kang

Context: Asymmetrical movements of trunk and lower-extremity are common during the bridge exercise on the unstable condition. However, no studies have investigated whether visual biofeedback of pressing pressure on the unstable surface changes muscle activation patterns of trunk and hip extensors and pelvic rotation during the bridge exercise. Objective: To investigate how visual biofeedback of pressing pressure influences symmetrical activity of lumbar and hip extensor and pelvic rotation. Design: Cross-sectional study. Setting: Laboratory. Participants: Twenty healthy males participated in this study. Interventions: The participants performed 2 versions of the bridge exercise: the standard bridge exercise and the bridge exercise with visual biofeedback using amount of pressing pressure on the sling. Main Outcome Measures: Surface electromyography was used to measure the symmetry (ie, the difference between dominant and nondominant sides) of muscle activation in the bilateral erector spinae, gluteus maximus, and hamstring muscles, and motion sensors were used to assess pelvic rotation. Symmetry of pressing pressure was measured using a tension meter. Results: The differences between the dominant and nondominant pressing pressures and differences between the electromyography activity of the dominant and nondominant erector spinae, gluteus maximus, and hamstring were significantly smaller during the bridge exercise with visual biofeedback than during the standard bridge exercise (P < .05). In addition, there was significantly less pelvic rotation during the bridge exercise with visual biofeedback than during the standard bridge exercise (P < .05). Conclusions: The present findings suggest that visual biofeedback strategy may be a useful method for enhancing the symmetrical activation of the erector spinae, gluteus maximus, and hamstring and for reducing pelvic rotation during the bridge exercise on the unstable surface.

Open access

Gabriel dos Santos Oliveira, João Breno de Araujo Ribeiro-Alvares, Felipe Xavier de Lima-e-Silva, Rodrigo Rodrigues, Marco Aurélio Vaz, and Bruno Manfredini Baroni

Context: Eccentric knee flexor strength assessments have a key role in both prevention and rehabilitation of hamstring strain injuries. Objective: To verify the reliability of a clinical test for measuring eccentric knee flexor strength during the Nordic hamstring exercise using a commercially available handheld dynamometer. Design: Reliability study. Setting: Physical Therapy Laboratory, Federal University of Health Sciences of Porto Alegre (Brazil). Participants: Fifty male amateur athletes (soccer or rugby players; 24 [3] y). Main Outcome Measures: Eccentric knee flexor strength. Results: When compared with a load cell–based device, the clinical test using a handheld dynamometer provided smaller force values (P < .05) with large effect sizes (.92–1.21), moderate intraclass correlation (.60–.62), typical error of 30 to 31 N, and coefficient of variation of 10% to 11%. Regarding the test–retest reproducibility (2 sessions separated by 1 week), the clinical test provided similar force values (P > .05) with only small effect sizes (.20–.27), moderate to good correlation (.67–.76), typical error of 23 to 24 N, and coefficient of variation of 9% to 10%. Conclusion: The clinical test with handheld dynamometer proposed by this study can be considered an affordable and relatively reliable tool for eccentric knee flexor strength assessment in the clinical setting, but results should not be directly compared with those provided by load cell–based devices.

Open access

Aaron Byrne, Clare Lodge, and Jennifer Wallace

Context: Single-leg stability has been associated with injury risk and is a key component of many injury prevention interventions. Methods of measuring single-leg stability are varied yet often unreliable. Objective: To establish within- and between-day test–retest reliability for single-leg time to stabilization (SL-TTS) following a drop-landing maneuver of 20 cm in height among a healthy cohort. Design: Test–retest reliability study. Setting: Healthy cohort from a third-level educational institution. Participants: Nineteen (11 females and 8 males) healthy individuals. Main Outcome Measures: The SL-TTS in the vertical plane. Results: The SL-TTS showed good within-day (intraclass correlation coefficient = .715) and excellent between-day (intraclass correlation coefficient = .83) test–retest reliability. The minimal detectable change was calculated as 171.6 ms for within-day contexts and 123.8 ms for between-day contexts. Conclusions: This method of measuring SL-TTS is reliable and could be used to detect changes over time in a healthy cohort. This could be of value to clinicians in injury risk factor identification or assessing the effectiveness of single-leg stability training. However, further research is needed to investigate its reliability in pathological populations.