Browse

You are looking at 11 - 20 of 170 items for :

  • Physical Education and Coaching x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Muscle Mass and Strength Gains Following Resistance Exercise Training in Older Adults 65–75 Years and Older Adults Above 85 Years

Gabriel Nasri Marzuca-Nassr, Andrea Alegría-Molina, Yuri SanMartín-Calísto, Macarena Artigas-Arias, Nolberto Huard, Jorge Sapunar, Luis A. Salazar, Lex B. Verdijk, and Luc J.C. van Loon

Resistance exercise training (RET) can be applied effectively to increase muscle mass and function in older adults (65–75 years). However, it has been speculated that older adults above 85 years are less responsive to the benefits of RET. This study compares the impact of RET on muscle mass and function in healthy older adults 65–75 years versus older adults above 85 years. We subjected 17 healthy older adults 65–75 years (OLDER 65–75, n = 13/4 [female/male]; 68 ± 2 years; 26.9 ± 2.3 kg/m2) and 12 healthy older adults above 85 years (OLDER 85+, n = 7/5 [female/male]; 87 ± 3 years; 26.0 ± 3.6 kg/m2) to 12 weeks of whole-body RET (three times per week). Prior to, and after 6 and 12 weeks of training, quadriceps and lumbar spine vertebra 3 muscle cross-sectional area (computed tomography scan), whole-body lean mass (dual-energy X-ray absorptiometry scan), strength (one-repetition maximum test), and physical performance (timed up and go and short physical performance battery) were assessed. Twelve weeks of RET resulted in a 10% ± 4% and 11% ± 5% increase in quadriceps cross-sectional area (from 46.5 ± 10.7 to 51.1 ± 12.1 cm2, and from 38.9 ± 6.1 to 43.1 ± 8.0 cm2, respectively; p < .001; η2 = .67); a 2% ± 3% and 2% ± 3% increase in whole-body lean mass (p = .001; η2 = .22); and a 38% ± 20% and 46% ± 14% increase in one-repetition maximum leg extension strength (p < .001; η2 = .77) in the OLDER 65–75 and OLDER 85+ groups, respectively. No differences in the responses to RET were observed between groups (Time × Group, all p > .60; all η2 ≤ .012). Physical performance on the short physical performance battery and timed up and go improved (both p < .01; η2 ≥ .22), with no differences between groups (Time × Group, p > .015; η2 ≤ .07). Prolonged RET increases muscle mass, strength, and physical performance in the aging population, with no differences between 65–75 years and 85+ years older adults.

Free access

Erratum. Effect of Moderate Versus Vigorous Exercise Intensity on Body Composition in Young Untrained Adults: The Activating Brown Adipose Tissue Through Exercise (ACTIBATE) Randomized Controlled Trial

International Journal of Sport Nutrition and Exercise Metabolism

Free access

Effects of Ketone Monoester and Bicarbonate Co-Ingestion on Cycling Performance in WorldTour Cyclists

Domingo Jesús Ramos-Campo, Francisco Javier López-Román, Silvia Pérez-Piñero, Raquel Ortolano, María Salud Abellán-Ruiz, Enrique Molina Pérez de los Cobos, Antonio Jesús Luque-Rubia, Dag Van Elslande, and Vicente Ávila-Gandía

The present randomized study investigated the effect of acute supplementation of 800 mg/kg of ketone monoester ingestion (KE) or placebo (PL) and 210 mg/kg of NaHCO3 co-ingestion on cycling performance of WorldTour cyclists during a road cycling stage simulation. Twenty-eight cyclists participated in the study (27.46 ± 4.32 years; 1.80 ± 0.06 m; 69.74 ± 6.36 kg). Performance, physiological, biochemical, and metabolism outcomes, gut discomfort, and effort perceived were assessed during a road cycling simulation composed of an 8-min time-trial (TT) performance + 30-s TT + 4.5 hr of outdoor cycling + a second 8-min TT + a second 30-s TT. Greater absolute and relative mean power during the first 8-min TT (F = 5.067, p = .033, η p 2 = .163 , F = 5.339, p = .029, η p 2 = .170 , respectively) was observed after KE than after PL (KE: 389 ± 34, PL: 378 ± 44 W, p = .002, d = 0.294 and KE: 5.60 ± 0.42, PL: 5.41 ± 0.44 W/kg, p = .001, d = 0.442). Additionally, greater concentration of β-hydroxybutyrate blood concentration (F = 42.195, p < .001, η p 2 = .619 ) was observed after KE than after PL during the first steps of the stage (e.g., after warm-up KE: 1.223 ± 0.642, PL: 0.044 ± 0.058 mM, p < .001, d = 2.589), although the concentrations returned to near baseline after 4.5 hr of outdoor cycling. Moreover, higher values of anion gap were observed (F = 2.333, p = .026, η p 2 = .080 ) after KE than after PL ingestion, after the warm-up and after the first 8-min and 30-s TT. Additionally, lower concentrations of HCO 3 were reported in the KE condition after warm-up and after the first 8-min and 30-s TT. During the initial phase of the stage simulation, acute supplementation with KE + NaHCO3 co-ingestion enhanced 8-min TT cycling performance (3.1%) in WorldTour cyclists with a concomitant hyperketonaemia.

Free access

Mouth Rinsing and Ingestion of Unpleasant Salty or Bitter Solutions Does Not Improve Cycling Sprint Performance in Trained Cyclists

Edward A. Gray, Rocco Cavaleri, and Jason C. Siegler

The purpose of this study was to investigate the influence of mouth rinsing and ingesting unpleasant salty or bitter solutions on cycling sprint performance and knee extensor force characteristics. Eleven male and one female trained cyclists (age: 34 ± 9 years, maximal oxygen uptake 56.9 ± 3.9 ml·kg−1·min−1) completed a ramp test and familiarization followed by four experimental trials. In each trial, participants completed an all-out 30-s cycling sprint with knee extensor maximal voluntary contractions before and immediately after the sprint. In a randomized, counterbalanced, cross-over order, the four main trials were: a no solution control condition, water, salty (5.8%), or bitter (2 mM quinine) solutions that were mouth rinsed (10 s) and ingested immediately before the cycling sprint. There were no significant differences between conditions in mean power (mean ± SD, no solution: 822 ± 115 W, water: 818 ± 108 W, salt: 832 ± 111 W, bitter: 818 ± 105 W); peak power (no solution: 1,184 ± 205 W, water: 1,177 ± 207 W, salt: 1,195 ± 210 W, bitter: 1,184 ± 209 W); or fatigue index (no solution: 51.5% ± 5.7%, water: 50.8% ± 7.0%, salt: 51.1% ± 5.9%, bitter: 51.2% ± 7.1%) during the sprint. Maximal force and impulse declined postexercise; however, there were no significant differences between conditions in knee extensor force characteristics. The present data do not support the use of unpleasant salty or bitter solutions as an ergogenic aid to improve sprint exercise performance.

Free access

The Impact of a Short-Term Ketogenic Low-Carbohydrate High-Fat Diet on Biomarkers of Intestinal Epithelial Integrity and Gastrointestinal Symptoms

Alannah K.A. McKay, Alice M. Wallett, Andrew J. McKune, Julien D. Périard, Philo Saunders, Jamie Whitfield, Nicolin Tee, Ida A. Heikura, Megan L.R. Ross, Avish P. Sharma, Ricardo J.S. Costa, and Louise M. Burke

Endurance exercise can disturb intestinal epithelial integrity, leading to increased systemic indicators of cell injury, hyperpermeability, and pathogenic translocation. However, the interaction between exercise, diet, and gastrointestinal disturbance still warrants exploration. This study examined whether a 6-day dietary intervention influenced perturbations to intestinal epithelial disruption in response to a 25-km race walk. Twenty-eight male race walkers adhered to a high carbohydrate (CHO)/energy diet (65% CHO, energy availability = 40 kcal·kg FFM−1·day−1) for 6 days prior to a Baseline 25-km race walk. Athletes were then split into three subgroups: high CHO/energy diet (n = 10); low-CHO, high-fat diet (LCHF: n = 8; <50 g/day CHO, energy availability = 40 kcal·kg FFM−1·day−1); and low energy availability (n = 10; 65% CHO, energy availability = 15 kcal·kg FFM−1·day−1) for a further 6-day dietary intervention period prior to a second 25-km race walk (Adaptation). During both trials, venous blood was collected pre-, post-, and 1 hr postexercise and analyzed for markers of intestinal epithelial disruption. Intestinal fatty acid-binding protein concentration was significantly higher (twofold increase) in response to exercise during Adaptation compared to Baseline in the LCHF group (p = .001). Similar findings were observed for soluble CD14 (p < .001) and lipopolysaccharide-binding protein (p = .003), where postexercise concentrations were higher (53% and 36%, respectively) during Adaptation than Baseline in LCHF. No differences in high CHO/energy diet or low energy availability were apparent for any blood markers assessed (p > .05). A short-term LCHF diet increased intestinal epithelial cell injury in response to a 25-km race walk. No effect of low energy availability on gastrointestinal injury or symptoms was observed.

Free access

Ergogenic Effects of Very Low to Moderate Doses of Caffeine on Vertical Jump Performance

Teppei Matsumura, Yuki Takamura, Kazushi Fukuzawa, Kazuya Nakagawa, Shunya Nonoyama, Keigo Tomoo, Hayato Tsukamoto, Yasushi Shinohara, Motoyuki Iemitsu, Akinori Nagano, Tadao Isaka, and Takeshi Hashimoto

Although the ergogenic effects of 3–6 mg/kg caffeine are widely accepted, the efficacy of low doses of caffeine has been discussed. However, it is unclear whether the ergogenic effects of caffeine on jump performance are dose responsive in a wide range of doses. This study aimed to examine the effect of very low (1 mg/kg) to moderate doses of caffeine, including commonly utilized ergogenic doses (i.e., 3 and 6 mg/kg), on vertical jump performance. A total of 32 well-trained collegiate sprinters and jumpers performed countermovement jumps and squat jumps three times each in a double-blind, counterbalanced, randomized, crossover design. Participants ingested a placebo or 1, 3, or 6 mg/kg caffeine 60 min before jumping. Compared with the placebo, 6 mg/kg caffeine significantly enhanced countermovement jump (p < .001) and squat jump (p = .012) heights; furthermore, 1 and 3 mg/kg of caffeine also significantly increased countermovement jump height (1 mg/kg: p = .002, 3 mg/kg: p < .001) but not squat jump height (1 mg/kg: p = .436, 3 mg/kg: p = .054). There were no significant differences among all caffeine doses in both jumps (all p > .05). In conclusion, even at a dose as low as 1 mg/kg, caffeine improved vertical jump performance in a dose-independent manner. This study provides new insight into the applicability and feasibility of 1 mg/kg caffeine as a safe and effective ergogenic strategy for jump performance.

Free access

Erratum. Ergogenic Effects of Very Low to Moderate Doses of Caffeine on Vertical Jump Performance

International Journal of Sport Nutrition and Exercise Metabolism

Free access

Stop, Collaborate, and Listen

James A. Betts

Free access

Erratum. The Postprandial Plasma Amino Acid Response Does Not Differ Following the Ingestion of a Solid Versus a Liquid Milk Protein Product in Healthy Adult Females

International Journal of Sport Nutrition and Exercise Metabolism

Open access

The Postprandial Plasma Amino Acid Response Does Not Differ Following the Ingestion of a Solid Versus a Liquid Milk Protein Product in Healthy Adult Females

Glenn A.A. van Lieshout, Jorn Trommelen, Jean Nyakayiru, Janneau van Kranenburg, Joan M. Senden, Lex B. Verdijk, and Luc J.C. van Loon

Dietary protein digestion and amino acid absorption rates are modulated by numerous factors such as the food matrix. It has been speculated that protein ingested in liquid form is more rapidly digested and absorbed when compared with ingestion in solid form. Here, we assessed the postprandial plasma amino acid availability following ingestion of a single bolus of protein provided in either liquid or solid form. Twelve healthy, young females were included in this randomized cross-over study. On two separate test days, participants ingested 20-g milk protein concentrate in solid form (protein bar) or in liquid form (protein drink). Products were composed of matched ingredients and, thereby, had the same macro- and micronutrient composition. On both test days, arterialized blood samples were collected at regular time intervals for up to 4 hr following protein ingestion to assess the postprandial rise in plasma amino acid concentrations. Protein ingestion robustly elevated circulating plasma amino acid concentrations (p < .001), with no significant differences between treatments (p = .088). The incremental area under the curve of the postprandial rise in total plasma amino acid concentrations did not differ following bar versus drink consumption (160 ± 73 vs. 160 ± 71 mmol·L−1·240 min−1, respectively; 95% confidence interval [−37, 37]; Cohen’s d z  = 0.003; p = .992). Ingestion of protein in liquid or solid form does not modulate postprandial amino acid availability in healthy, female adults. Any differences in protein digestion and amino acid absorption due to differences in food matrix are not attributed to the protein being consumed as a bar or as a drink.