You are looking at 21 - 30 of 274 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Jennifer L. Ostrowski, Alexa Beaumont, and Emily Dochterman

Clinical Scenario: Pathologies of the long head of the biceps brachii (LHB) tendon are a source of shoulder pain in many people. It is important to have a reliable assessment of the LHB tendon to make an accurate diagnosis and provide the correct treatment or referral if necessary. Shoulder ultrasound is very accurate in the diagnosis of rotator cuff tears. However, its ability to detect pathologies of the LHB tendon is still unclear. Clinical Question: In patients with shoulder pain, can musculoskeletal ultrasound accurately diagnose LHB tendon pathologies? Summary of Key Findings: Four high-quality cohort studies met inclusion criteria and were included in the critical appraisal. The STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to score the articles on methodology and consistency. Three studies evaluated accuracy in diagnosis of full-thickness tears and found high sensitivity (SN) and specificity (SP). Three studies evaluated accuracy in diagnosis of partial-thickness tears and found low SN and negative predictive value, but high SP and positive predictive value. Two studies evaluated tendon subluxation/dislocation and found high SN and SP. Two studies evaluated tendinitis and found moderate SN and high SP. Clinical Bottom Line: There is moderate to strong evidence to support the use of musculoskeletal ultrasound in diagnosis of LHB tendon pathology. Strength of Recommendation: There is grade B evidence that musculoskeletal ultrasound can accurately diagnose full-thickness tears and tendon subluxation/dislocation; can rule in partial-thickness tears (based on SP and positive predictive value), but not rule out partial-thickness tears; and can rule in tendinitis (based on SP and positive predictive value), but not rule out tendinitis.

Open access

Félix Croteau, Shawn M. Robbins, and David Pearsall

Context: Previous authors suggest that lack of strength is an important risk factor for injuries in water polo. Hand-held dynamometers have potential as a clinical tool to measure strength, but they have not been validated in water polo players. Objective: The purpose of this study was to estimate intertrial variability and concurrent validity of hand-held dynamometer shoulder strength measurements in elite water polo players. Methods: A total of 19 male and 20 female elite water polo players performed isometric external (ER) and internal (IR) rotation strength tests against a hand-held dynamometer bilaterally in supine position with the shoulder in a 90–90 position. In addition, concentric IR and ER was captured at 90 deg/s with an isokinetic dynamometer, and torque values were determined near the 90–90 position. Main Outcome Measures: Spearman correlation coefficients were calculated for ER torque, IR torque, and ER/IR ratios between the devices. Two-way mixed-model intraclass correlations were used to assess intertrial variability. Results: Correlations between the devices were strong to very strong (ρ = .65–.82, P < .01) for absolute IR and ER but low for ER/IR ratios (ρ = .29, P = .07). There was less agreement at higher torque values. Intertrial variability was low with intraclass correlation values .88 to .93, P < .05. Conclusions: These results show that hand-held dynamometers are adequate clinical alternatives to measure absolute shoulder strength in water polo players. Stronger players may require stronger evaluators to resist the player’s push and obtain reliable results.

Open access

Robert C. Lynall, Rachel S. Johnson, Landon B. Lempke, and Julianne D. Schmidt

Context: Reaction time is commonly assessed postconcussion through a computerized neurocognitive battery. Although this measure is sensitive to postconcussion deficits, it is not clear if computerized reaction time reflects the dynamic reaction time necessary to compete effectively and safely during sporting activities. Functional reaction time assessments may be useful postconcussion, but reliability must be determined before clinical implementation. Objective: To determine the test–retest reliability of a functional reaction time assessment battery and to determine if reaction time improved between sessions. Design: Cohort. Setting: Laboratory. Participants: Forty-one participants (21 men and 20 women) completed 2 time points. Participants, on average, were 22.5 (2.1) years old, 72.5 (11.9) cm tall, had a mass of 71.0 (13.7) kg, and were mostly right leg and hand dominant (92.7%). Interventions: Participants completed 2 clinical reaction time tests (computerized Stroop and drop stick) and 5 functional reaction time tests (gait, jump landing, single-leg hop, anticipated cut, and unanticipated cut) across 2 sessions. Drop stick and functional reaction time assessments were performed in single (motor task only) and dual task (motor task with cognitive task). Main Outcome Measures: Reaction time (in seconds) was calculated during all assessments. Test–retest reliability was determined using 2-way mixed-effects intraclass correlation coefficients (3, k). Paired samples t tests compared mean reaction time between sessions. Results: Test–retest reliability was moderate to excellent for all reaction time outcomes (intraclass correlation coefficients [3, k] range = .766–.925). Several statistically significant between-session mean differences were observed, but effect sizes were negligible to small (d range = 0.05–0.44). Conclusions: The functional reaction time assessment battery displayed similar reliability to the standard computerized reaction time assessment battery and may provide important postinjury information, but more research is needed to determine clinical utility.

Open access

Emma F. Zuk, Gyujin Kim, Jacqueline Rodriguez, Brandon Hallaway, Amanda Kuczo, Shayna Deluca, Kirsten Allen, Neal R. Glaviano, and Lindsay J. DiStefano

Clinical Scenario: Patellofemoral pain (PFP) is characterized by general anterior knee pain around the patella and is one of the most prevalent knee conditions. PFP is challenging to treat due to a wide range of contributing factors and often has chronic, reoccurring symptoms. Traditional treatment focuses on quadriceps and gluteal strengthening with minimal emphasis on deep trunk musculature. Recently, there has been a growing body of literature supporting the beneficial effects of core stability exercises as a treatment option for PFP. Clinical Question: Are core stability exercises coupled with traditional rehabilitation more effective than only traditional rehabilitation techniques for decreasing pain in patients with PFP? Summary of Key Findings: Three articles met the inclusion criteria and investigated core strengthening exercises as a treatment for PFP. Two studies investigated a 4-week exercise protocol and demonstrated a greater decrease in pain when compared to the control group. The third study examined the effects of a 6-week program where both the intervention and control groups resulted in similar reduction of pain. All articles included received a minimum of 6 on the PEDro scale. Clinical Bottom Line: There is evidence that supports core stability exercise protocols coupled with traditional rehabilitation as being more effective in reducing pain in patients with PFP when compared to traditional rehabilitation alone. Strength of Recommendation:The grade of A is recommended based on the Strength of Recommendation Taxonomy.

Open access

Tetsuo Fukunaga

Open access

Chris M. Edwards

Clinical Scenerio: Neck pain is a costly symptom in both civilian and military worlds. While traditional treatments include deep neck flexor stabilizing exercises, manual therapy, electrical therapy, and other nonsurgical interventions, scapular orientation and stability training has emerged as a possible tool to reduce neck pain severity. Methods that can be coached at a distance could be of value in virtual appointments or circumstances where access to a qualified manual therapist is limited. Focused Clinical Question: What is the effectiveness of including exercise programs targeting scapular kinematics and stability to decrease neck pain? Summary of Key Findings: Exercise programs targeting scapular kinematics and stability, with coaching and individualized progressions, appear to reduce neck pain severity. Clinical Bottom Line: Evidence supports the inclusion of exercises for scapular kinematics and stability at a prescription of 3 sessions per week, with a duration of 4 or 6 weeks. Exercise programs should include a “learning” or coaching phase to ensure exercises are performed as intended, and exercise progressions should be based on participant ability rather than predetermined timelines. Further research is needed to better understand the benefits of this potential strategy and the statistical impact of scapular-focused exercise interventions on neck pain in specific populations like military and athletes. Strength of Recommendation: There is ‘Fair’ to ‘Good’ evidence from 2 level 1b single-blind randomized control studies and 1 level 2b pre-post test control design study supporting the inclusion of exercise programs targeting scapular kinematics and stability to decrease chronic neck pain severity.

Open access

Rodrigo Rodrigues Gomes Costa, Jefferson Rodrigues Dorneles, Guilherme Henrique Lopes, José Irineu Gorla, and Frederico Ribeiro Neto

Context: Monitoring training loads and consequent fatigue responses are usually a result of personal trainers’ experiences and an adaptation of methods used in sports for people without disabilities. Currently, there is little scientific evidence on the relationship between training load and fatigue resulting from training sessions in wheelchair sports. Analogous to the vertical jump, which has been associated with competitive performance and used to assess fatigue in Olympic sports, the medicine ball throw (MBT) is a fast, feasible, and accessible test that might be used to measure performance outcomes in Paralympic athletes. Objective: To test the MBT responsiveness to detect meaningful changes after training sessions in beginner wheelchair basketball players (WBP). Design: Cross-sectional study. Setting: Rehabilitation Hospital Network, Paralympic Program. Participants: Twelve male WBP. Main Outcomes Measures: The participants performed 3 consecutive days of training sessions involving exercises of wheelchair basketball skills, strength, and power. The MBT test was performed pre and post training sessions. Results: The smallest worthwhile change for MBT was 0.10 cm, and the lower and upper limits were 3.54 and 3.75 m, respectively. On the first day, the MBT started below the smallest worthwhile change lower limit and increased above the upper limit (3.53 and 3.78 m, respectively). On the second day, the MBT pretraining and posttraining session results were near the sample mean (3.62 and 3.59 m, respectively). On the third day, the WBP started the MBT test training higher than the upper limit (3.78 m) and decreased to near the mean (3.58 m). Conclusions: During 3 consecutive days of training sessions, the magnitude-based inference model presented meaningful changes in MBT test performance. The accurate association of the magnitude-based inference model with the MBT allows coaches and sports team staff to interpret the correct magnitude of change in WBP performance.

Full access

Guillermo Mendez-Rebolledo, Romina Figueroa-Ureta, Fernanda Moya-Mura, Eduardo Guzmán-Muñoz, Rodrigo Ramirez-Campillo, and Rhodri S. Lloyd

Context: Few reports have analyzed the effects of neuromuscular (NM) training programs on the injury incidence among youth female track-and-field athletes. Objective: To determine the effects of NM training on reducing lower limb injury incidence and to establish its effects on countermovement jump performance, balance, 30-m sprint, and joint position sense in youth female track-and-field athletes. Design: Single-blind, randomized controlled clinical trial. Setting:Sports research laboratory. Participants: Twenty-two female athletes were allocated into 2 groups: Conventional (CONV) training (n = 11; age = 15.3 [2.1] y) and NM training (n = 11; age = 15.0 [2.7] y). Interventions: Interventions were performed during the preseason of 6 weeks. The CONV training included anaerobic, strength, and aerobic training. The NM training consisted of a multicomponent program that integrated jumps, landings, and running with strength, endurance, agility, balance, and CORE training. Main Outcome Measures: A follow-up of the cohorts was carried out through the evaluation of lower limb injuries (main outcome) during a regular season (weeks 7–18). Secondary outcomes were measured before and after the intervention: Y-balance test, active joint repositioning, ground reaction force, and countermovement jump height. Results: The injury incidence rate was 17.89 injuries per 1000 hours athlete-exposure in CONV training, and 6.58 in NM training (relative risk = 0.38; 95% confidence interval,  0.18 to 0.82; P = .044). Particularly, the medial tibial stress syndrome incidence rate was 5.96 injuries per 1000 hours athlete-exposure in CONV training and 0.82 in NM training (relative risk = 0.17; 95% confidence interval, 0.02 to 1.12; P = .012). In addition, a significant training × time interaction was noted, favoring improvements in 30-m sprint and countermovement jump height after NM. Conclusion: The NM training may improve youth female athlete’s physical fitness and reduce their injury relative risk of medial tibial stress syndrome injury.

Full access

John J. Fraser, Rachel Koldenhoven, and Jay Hertel

Context: Tibial nerve impairment and reduced plantarflexion, hallux flexion, and lesser toe flexion strength have been observed in individuals with recent lateral ankle sprain (LAS) and chronic ankle instability (CAI). Diminished plantar intrinsic foot muscles (IFMs) size and contraction are a likely consequence. Objectives: To assess the effects of ankle injury on IFM size at rest and during contraction in young adults with and without LAS and CAI. Setting: Laboratory. Design: Cross-sectional. Patients: A total of 22 healthy (13 females; age = 19.6 [0.9], body mass index [BMI] = 22.5 [3.2]), 17 LAS (9 females; age = 21.8 [4.1], BMI = 24.1 [3.7]), 21 Copers (13 females; age = 20.8 [2.9], BMI = 23.7 [2.9]), and 20 CAI (15 females; age = 20.9 [4.7], BMI = 25.1 [4.5]). Main Outcome Measures: Foot Posture Index (FPI), Foot Mobility Magnitude (FMM), and ultrasonographic cross-sectional area of the abductor hallucis, flexor digitorum brevis, quadratus plantae, and flexor hallucis brevis were assessed at rest, and during nonresisted and resisted contraction. Results: Multiple linear regression analyses assessing group, sex, BMI, FPI, and FMM on resting and contracted IFM size found sex (B = 0.45; P < .001), BMI (B = 0.05; P = .01), FPI (B = 0.07; P = .05), and FMM × FPI interaction (B = −0.04; P = .008) accounted for 19% of the variance (P = .002) in resting abductor hallucis measures. Sex (B = 0.42, P < .001) and BMI (B = 0.03, P = .02) explained 24% of resting flexor digitorum brevis measures (P < .001). Having a recent LAS (B = 0.06, P = .03) and FMM (B = 0.04, P = .02) predicted 11% of nonresisted quadratus plantae contraction measures (P = .04), with sex (P < .001) explaining 13% of resting quadratus plantae measures (B = 0.24, P = .02). Both sex (B = 0.35, P = .01) and FMM (B = 0.15, P = .03) predicted 16% of resting flexor hallucis brevis measures (P = .01). There were no other statistically significant findings. Conclusions: IFM resting ultrasound measures were primarily determined by sex, BMI, and foot phenotype and not injury status. Routine ultrasound imaging of the IFM following LAS and CAI cannot be recommended at this time but may be considered if neuromotor impairment is suspected.

Open access

Jared Patus

Clinical Scenario: Traditional loading (TL) is a common technique to employ when engaging in countermovement jumps (CMJ). Accentuated eccentric loading (AEL) is a newer modality that is being explored for acute CMJ performance. Focused Clinical Question: In adult, resistance-trained males, will AEL have a superior impact on acute CMJ performance compared to TL? Summary of Key Findings: The literature was searched for studies that examined the influence of AEL on acute CMJ performance compared to a TL protocol. TL was defined as any loading condition that utilized an equivalent resistance during both the eccentric and concentric contractions. Three studies met the inclusion and exclusion criteria, and were identified and included in the critically appraised topic. Each of the 3 studies found that various AEL conditions were either equal to or better than TL when examining subsequent CMJ performance. In no specific CMJ outcome measure was TL deemed to have a greater impact than AEL. Clinical Bottom Line: AEL provides more favorable acute CMJ performance than TL in adult, resistance-trained males. Strength of Recommendation: Consistent findings from 2 randomized crossover studies and one repeated-measured design investigation suggest level 2b evidence to support AEL as an ideal protocol for acute CMJ performance.