Browse

You are looking at 21 - 30 of 383 items for :

  • Psychology and Behavior in Sport/Exercise x
  • Sport and Exercise Science/Kinesiology x
  • User-accessible content x
Clear All
Open access

Kathleen A. Martin Ginis, Amy E. Latimer-Cheung, and Christopher R. West

Open access

Catherine Carty, Hidde P. van der Ploeg, Stuart J.H. Biddle, Fiona Bull, Juana Willumsen, Lindsay Lee, Kaloyan Kamenov, and Karen Milton

Open access

Michelle Pannor Silver

Self-perceptions about aging have implications for health and well-being; however, less is known about how these perceptions influence adaptation to major life transitions. The goal of this study was to examine how high-performance athletes’ perceptions about aging influenced their adaptation to athletic retirement. In-depth interviews conducted with 24 retired Olympic athletes using thematic analysis yielded three key themes: (a) perceptions about aging influenced participants’ postretirement exercise habits, (b) perceptions about aging motivated participants to engage in civic activities, and (c) participants who lacked formative perceptions about aging associated their athletic retirement with their own lost sense of purpose. These findings provide evidence that perceptions about aging influence athletes’ adaptation to retirement by directing their subsequent engagement in postretirement activities. Furthermore, this research highlights theoretical implications for the literature regarding embodied processes, retirement transitions, role models, and adaptation to new physical states.

Open access

Thomas L. Schmid, Janet E. Fulton, Jean M. McMahon, Heather M. Devlin, Kenneth M. Rose, and Ruth Petersen

Open access

Supun Nakandala, Marta M. Jankowska, Fatima Tuz-Zahra, John Bellettiere, Jordan A. Carlson, Andrea Z. LaCroix, Sheri J. Hartman, Dori E. Rosenberg, Jingjing Zou, Arun Kumar, and Loki Natarajan

Background: Machine learning has been used for classification of physical behavior bouts from hip-worn accelerometers; however, this research has been limited due to the challenges of directly observing and coding human behavior “in the wild.” Deep learning algorithms, such as convolutional neural networks (CNNs), may offer better representation of data than other machine learning algorithms without the need for engineered features and may be better suited to dealing with free-living data. The purpose of this study was to develop a modeling pipeline for evaluation of a CNN model on a free-living data set and compare CNN inputs and results with the commonly used machine learning random forest and logistic regression algorithms. Method: Twenty-eight free-living women wore an ActiGraph GT3X+ accelerometer on their right hip for 7 days. A concurrently worn thigh-mounted activPAL device captured ground truth activity labels. The authors evaluated logistic regression, random forest, and CNN models for classifying sitting, standing, and stepping bouts. The authors also assessed the benefit of performing feature engineering for this task. Results: The CNN classifier performed best (average balanced accuracy for bout classification of sitting, standing, and stepping was 84%) compared with the other methods (56% for logistic regression and 76% for random forest), even without performing any feature engineering. Conclusion: Using the recent advancements in deep neural networks, the authors showed that a CNN model can outperform other methods even without feature engineering. This has important implications for both the model’s ability to deal with the complexity of free-living data and its potential transferability to new populations.

Full access

Katie Potter, Robert T. Marcotte, Greg J. Petrucci, Caitlin Rajala, Deborah E. Linder, and Laura B. Balzer

Given high rates of obesity and chronic disease in both people and dogs, it is important to understand how dogs and dog owners influence each other’s health, including physical activity (PA) levels. Research suggests that dog owners who walk their dogs are more likely to meet PA guidelines than those who do not, but few studies have investigated dog walking intensity or its contribution to dog owners’ total moderate-to-vigorous PA using accelerometry. Furthermore, no studies have examined the contribution of dog walking to dogs’ total PA or the relationship between dog and dog owner PA using accelerometers on dogs. The authors used accelerometers on 33 dog owner–dog pairs to investigate (a) the intensity of dog walking behavior, (b) the contribution of dog walking to dog owners’ overall moderate-to-vigorous PA and dogs’ overall PA, and (c) the correlation between dog and dog owner PA. Dog owners wore an ActiGraph accelerometer and logged all dog walking for 7 days; dogs wore a Fitbark activity monitor. On average, 64.1% (95% confidence interval [55.2, 73.1]) of daily dog walking was moderate to vigorous intensity, and dog walking accounted for 51.2% (95% confidence interval [44.1, 58.3]) of dog owners’ daily moderate-to-vigorous PA. Dog walking accounted for 41.2% (95% confidence interval [36.0, 46.4]) of dogs’ daily PA. Dog owners’ daily steps were moderately correlated (r = .54) with dogs’ daily activity points. These findings demonstrate the interdependence of dog and dog owner PA and can inform interventions that leverage the dog–owner bond to promote PA and health in both species.

Full access

Elif Inan-Eroglu, Bo-Huei Huang, Leah Shepherd, Natalie Pearson, Annemarie Koster, Peter Palm, Peter A. Cistulli, Mark Hamer, and Emmanuel Stamatakis

Background: Thigh-worn accelerometers have established reliability and validity for measurement of free-living physical activity-related behaviors. However, comparisons of methods for measuring sleep and time in bed using the thigh-worn accelerometer are rare. The authors compared the thigh-worn accelerometer algorithm that estimates time in bed with the output of a sleep diary (time in bed and time asleep). Methods: Participants (N = 5,498), from the 1970 British Cohort Study, wore an activPAL device on their thigh continuously for 7 days and completed a sleep diary. Bland–Altman plots and Pearson correlation coefficients were used to examine associations between the algorithm derived and diary time in bed and asleep. Results: The algorithm estimated acceptable levels of agreement with time in bed when compared with diary time in bed (mean bias of −11.4 min; limits of agreement −264.6 to 241.8). The algorithm-derived time in bed overestimated diary sleep time (mean bias of 55.2 min; limits of agreement −204.5 to 314.8 min). Algorithm and sleep diary are reasonably correlated (ρ = .48, 95% confidence interval [.45, .52] for women and ρ = .51, 95% confidence interval [.47, .55] for men) and provide broadly comparable estimates of time in bed but not for sleep time. Conclusions: The algorithm showed acceptable estimates of time in bed compared with diary at the group level. However, about half of the participants were outside of the ±30 min difference of a clinically relevant limit at an individual level.

Full access

John Bellettiere, Fatima Tuz-Zahra, Jordan A. Carlson, Nicola D. Ridgers, Sandy Liles, Mikael Anne Greenwood-Hickman, Rod L. Walker, Andrea Z. LaCroix, Marta M. Jankowska, Dori E. Rosenberg, and Loki Natarajan

Little is known about how sedentary behavior (SB) metrics derived from hip- and thigh-worn accelerometers agree for older adults. Thigh-worn activPAL (AP) micro monitors were concurrently worn with hip-worn ActiGraph (AG) GT3X+ accelerometers (with SB measured using the 100 counts per minute [cpm] cut point; AG100cpm) by 953 older adults (age 77 ± 6.6, 54% women) for 4–7 days. Device agreement for sedentary time and five SB pattern metrics was assessed using mean error and correlations. Logistic regression tested associations with four health outcomes using standardized (i.e., z scores) and unstandardized SB metrics. Mean errors (AP − AG100cpm) and 95% limits of agreement were: sedentary time −54.7 [−223.4, 113.9] min/day; time in 30+ min bouts 77.6 [−74.8, 230.1] min/day; mean bout duration 5.9 [0.5, 11.4] min; usual bout duration 15.2 [0.4, 30] min; breaks in sedentary time −35.4 [−63.1, −7.6] breaks/day; and alpha −.5 [−.6, −.4]. Respective Pearson correlations were: .66, .78, .73, .79, .51, and .40. Concordance correlations were: .57, .67, .40, .50, .14, and .02. The statistical significance and direction of associations were identical for AG100cpm and AP metrics in 46 of 48 tests, though significant differences in the magnitude of odds ratios were observed among 13 of 24 tests for unstandardized and five of 24 for standardized SB metrics. Caution is needed when interpreting SB metrics and associations with health from AG100cpm due to the tendency for it to overestimate breaks in sedentary time relative to AP. However, high correlations between AP and AG100cpm measures and similar standardized associations with health outcomes suggest that studies using AG100cpm are useful, though not ideal, for studying SB in older adults.