Browse

You are looking at 21 - 30 of 265 items for :

  • Sport and Exercise Science/Kinesiology x
  • International Journal of Sports Physiology and Performance x
  • Refine by Access: Content accessible to me x
Clear All
Free access

Combining Heat and Altitude Training to Enhance Temperate, Sea-Level Performance

Olivier Girard, Peter Peeling, Sébastien Racinais, and Julien D. Périard

Background: Repeated exposure to heat (ie, plasma volume expansion) or altitude (ie, increase in total hemoglobin mass), in conjunction with exercise, induces hematological adaptations that enhance endurance performance in each respective environment. Recently, combining heat and altitude training has become increasingly common for athletes preparing to compete in temperate, sea-level conditions. Purpose: To review the physiological adaptations to training interventions combining thermal and hypoxic stimuli and summarize the implications for temperate, sea-level performance. Current Evidence: To date, research on combining heat and hypoxia has employed 2 main approaches: simultaneously combining the stressors during training or concurrently training in the heat and sleeping at altitude, sometimes with additional training in hypoxia. When environmental stimuli are combined in a training session, improvements in aerobic fitness and time-trial performance in temperate, sea-level conditions are generally similar in magnitude to those observed with heat, or altitude, training alone. Similarly, training in the heat and sleeping at altitude does not appear to provide any additional hematological or nonhematological benefits for temperate; sea-level performance relative to training in hot, hypoxic, or control conditions. Conclusions: Current research regarding combined heat and altitude interventions does not seem to indicate that it enhances temperate, sea-level performance to a greater extent than “traditional” (heat or hypoxia alone) training approaches. A major challenge in implementing combined-stressor approaches lies in the uncertainty surrounding the prescription of dosing regimens (ie, exercise and environmental stress). The potential benefits of conducting heat and altitude exposure sequentially (ie, one after the other) warrants further investigation.

Free access

From Mentorship to Sponsorship in Sport Science

Iñigo Mujika and Peter Leo

Free access

Addressing Circadian Disruptions in Visually Impaired Paralympic Athletes

Travis Anderson, William M. Adams, Geoffrey T. Burns, Eric G. Post, Sally Baumann, Emily Clark, Karen Cogan, and Jonathan T. Finnoff

Purpose: Transmeridian travel is common for elite athletes participating in competitions and training. However, this travel can lead to circadian misalignment wherein the internal biological clock becomes desynchronized with the light–dark cycle of the new environment, resulting in performance decrement and potential negative health consequences. Existing literature extensively discusses recommendations for managing jet lag, predominantly emphasizing light-based interventions to synchronize the internal clock with the anticipated time at the destination. Nevertheless, visually impaired (VI) athletes may lack photoreceptiveness, diminishing or nullifying the effectiveness of this therapy. Consequently, this invited commentary explores alternative strategies for addressing jet lag in VI athletes. Conclusions: VI athletes with light perception but reduced visual acuity or visual fields may still benefit from light interventions in managing jet lag. However, VI athletes lacking a conscious perception of light should rely on gradual shifts in behavioral factors, such as meal timing and exercise, to facilitate the entrainment of circadian rhythms to the destination time. Furthermore, interventions like melatonin supplementation may prove useful during and after travel. In addition, it is recommended that athlete guides adopt phase-forward or phase-back approaches to synchronize with the athlete, aiding in jet-lag management and optimizing performance.

Free access

The “Making” of World-Class Athletes Is Still a Case for Humble Admissions

Ralph Beneke

Free access

Erratum. Match Running Performance in Australian Football Is Related to Muscle Fiber Typology

International Journal of Sports Physiology and Performance

Free access

Bringing on the Next Generation of Sport Scientists: The Benefits of Work-Integrated Learning

David B. Pyne

Free access

Erratum. Match Running Performance in Australian Football Is Related to Muscle Fiber Typology

International Journal of Sports Physiology and Performance

Free access

Performance Management in Elite Football: A Teamwork Modeling Approach

Joao Marques and Karim Chamari

Free access

The Force–Velocity Profiling Concept for Sprint Running Is a Dead End

Gertjan Ettema

Purpose: In this commentary, I present arguments against the use of the force–velocity profiling concept in design and adaptations of training programs targeting sprinting. The purpose of this commentary is to make sports practitioners more aware of the rationale behind the concept and explain why it does not work. Rationale: Force–velocity profiling is a mathematical way to present the velocity development during sprint behavior. Some details of this behavior may be accentuated by transforming it to other variables, but it does not add any new information about sprint performance. Thus, contrary to what is often claimed, the force–velocity profile does not represent maximal capacities (ability of force and velocity generation) of the athlete. It is claimed that through force–velocity profiling one may identify the optimal ratio of force and velocity capacities. Furthermore, proponents of the force–velocity profiling concept suggest that through directed training force and velocity capacities can be altered (inversely dependent) to obtain this optimal ratio, without changing the capacity to express power. Fundamentally, this idea is unfounded and implausible. Conclusion: At best, force–velocity profiling may be able to identify between-athletes differences. However, these can be more easily deduced directly from performance time traces.

Free access

Rethinking Sport Science to Improve Coach–Researcher Interactions

Irineu Loturco