Browse

You are looking at 31 - 40 of 92 items for :

  • Physical Education and Coaching x
  • User-accessible content x
Clear All
Full access

Tim Fletcher, Ken Lodewyk, Katie Glover and Sandra Albione

Purpose: To examine the experiences of a cohort of health and physical education teachers and consultants who were learning to become instructional coaches. Methods: Three surveys and three focus groups were administered to 14 participants over 9 months to consider their experiences of learning to become instructional coaches. Concepts from expectancy-value theory guided analyses of both quantitative and qualitative data. Results: Participants reported positive experiences learning to become instructional coaches. Understanding and importance-utility value increased significantly between the administration of initial and end surveys. Focus group data generally supported quantitative findings while enabling more specific insights to be gained, particularly regarding specific moments of participants’ learning that led to a shift in thinking or practice. Conclusions: Participants valued their experiences learning to become instructional coaches and identified the instructional coaching model as a powerful form of job-embedded professional learning based on teachers’ context-specific needs.

Full access

Joanne G. Mirtschin, Sara F. Forbes, Louise E. Cato, Ida A. Heikura, Nicki Strobel, Rebecca Hall and Louise M. Burke

The authors describe the implementation of a 3-week dietary intervention in elite race walkers at the Australian Institute of Sport, with a focus on the resources and strategies needed to accomplish a complex study of this scale. Interventions involved: traditional guidelines of high carbohydrate (CHO) availability for all training sessions; a periodized CHO diet which integrated sessions with low and high CHO availability within the same total CHO intake; and a ketogenic low-CHO high-fat diet. Seven-day menus and recipes were constructed for a communal eating setting to meet nutritional goals as well as individualized food preferences and special needs. Menus also included nutrition support before, during, and after exercise. Daily monitoring, via observation and food checklists, showed that energy and macronutrient targets were achieved. Diets were matched for energy (∼14.8 MJ/d) and protein (∼2.1 g·kg−1·day−1) and achieved desired differences for fat and CHO, with high CHO availability and periodized CHO availability: CHO = 8.5 g·kg−1·day−1, 60% energy, fat = 20% of energy and low-CHO high-fat diet: 0.5 g·kg−1·day−1 CHO, fat = 78% energy.  There were no differences in micronutrient intake or density between the high CHO availability and periodized CHO availability diets; however, the micronutrient density of the low-CHO high-fat diet was significantly lower. Daily food costs per athlete were similar for each diet (∼AU$ 27 ± 10). Successful implementation and monitoring of dietary interventions in sports nutrition research of the scale of the present study require meticulous planning and the expertise of chefs and sports dietitians. Different approaches to sports nutrition support raise practical challenges around cost, micronutrient density, accommodation of special needs, and sustainability.

Full access

Louise M. Burke, John A. Hawley, Asker Jeukendrup, James P. Morton, Trent Stellingwerff and Ronald J. Maughan

From the breakthrough studies of dietary carbohydrate and exercise capacity in the 1960s through to the more recent studies of cellular signaling and the adaptive response to exercise in muscle, it has become apparent that manipulations of dietary fat and carbohydrate within training phases, or in the immediate preparation for competition, can profoundly alter the availability and utilization of these major fuels and, subsequently, the performance of endurance sport (events >30 min up to ∼24 hr). A variety of terms have emerged to describe new or nuanced versions of such exercise–diet strategies (e.g., train low, train high, low-carbohydrate high-fat diet, periodized carbohydrate diet). However, the nonuniform meanings of these terms have caused confusion and miscommunication, both in the popular press and among the scientific community. Sports scientists will continue to hold different views on optimal protocols of fuel support for training and competition in different endurance events. However, to promote collaboration and shared discussions, a commonly accepted and consistent terminology will help to strengthen hypotheses and experimental/experiential data around various strategies. We propose a series of definitions and explanations as a starting point for a more unified dialogue around acute and chronic manipulations of fat and carbohydrate in the athlete’s diet, noting philosophies of approaches rather than a single/definitive macronutrient prescription. We also summarize some of the key questions that need to be tackled to help produce greater insight into this exciting area of sports nutrition research and practice.

Open access

Bård Erlend Solstad, Andreas Ivarsson, Ellen Merethe Haug and Yngvar Ommundsen

The purpose of this study was to investigate the associations between giving empowering and disempowering sports coaching to young athletes and coaches’ well-being across the season. The sample comprised 169 Norwegian youth football (i.e., European soccer) coaches with a mean age of 41.99 (SD = 6.32). Moreover, we were interested in examining heterogeneous groups of coaches showing variability in their self-reporting of empowering and disempowering behaviors towards their athletes. Thus, a person-centered approach was used. The latent profile analysis revealed three distinct profiles and the association between these profiles and coaches’ well-being was in line with the outlined hypotheses. Specifically, coaches who gave higher levels of empowering and lower levels of disempowering sports coaching to their athletes at the beginning of the season also reported higher levels of well-being at the end of the season. The results indicate that there exists an intrinsic value as to why coaches should give empowering sports coaching, as opposed to disempowering sports coaching, to their athletes; namely, these actions may be advantageous in terms of improving their own well-being. In practical terms, future coach education may take advantage of these findings by providing coaches another reason for coaching in an empowering manner.

Full access

Ken Pitetti, Ruth Ann Miller and E. Michael Loovis

Male youth (8–18 years) with intellectual disability (ID) demonstrate motor proficiency below age-related competence capacities for typically developing youth. Whether below-criteria motor proficiency also exists for females with ID is not known. The purpose of this study was to determine if sex-specific differences exist in motor proficiency for youth with ID. The Bruininks-Oseretsky Test of Motor Proficiency was used to measure motor proficiency: six items for upper limb coordination, seven items for balance, and six items for bilateral coordination. One hundred and seventy-two (172) males and 85 females with ID but without Down syndrome were divided into five age groups for comparative purposes: 8–10, 11–12, 13–14, 15–16, and 17–21 years. Males scored sufficiently higher than females to suggest that sex data should not be combined to established Bruininks-Oseretsky Test of Motor Proficiency standards for upper limb coordination, balance, and bilateral coordination subtests.

Open access

D. Enette Larson-Meyer, Kathleen Woolf and Louise Burke

Nutrition assessment is a necessary first step in advising athletes on dietary strategies that include dietary supplementation, and in evaluating the effectiveness of supplementation regimens. Although dietary assessment is the cornerstone component of the nutrition assessment process, it should be performed within the context of a complete assessment that includes collection/evaluation of anthropometric, biochemical, clinical, and environmental data. Collection of dietary intake data can be challenging, with the potential for significant error of validity and reliability, which include inherent errors of the collection methodology, coding of data by dietitians, estimation of nutrient composition using nutrient food tables and/or dietary software programs, and expression of data relative to reference standards including eating guidance systems, macronutrient guidelines for athletes, and recommended dietary allowances. Limitations in methodologies used to complete anthropometric assessment and biochemical analysis also exist, as reference norms for the athlete are not well established and practical and reliable biomarkers are not available for all nutrients. A clinical assessment collected from history information and the nutrition-focused physical exam may help identify overt nutrient deficiencies but may be unremarkable in the well-trained athlete. Assessment of potential food-drug interactions and environmental components further helps make appropriate dietary and supplement recommendations. Overall, the assessment process can help the athlete understand that supplement intake cannot make up for poor food choices and an inadequate diet, while a healthy diet helps ensure maximal benefit from supplementation. Establishment of reference norms specifically for well-trained athletes for the nutrition assessment process is a future research priority.

Open access

Ina Garthe and Ronald J. Maughan

In elite sport, where opponents are evenly matched, small factors can determine the outcome of sporting contests. Not all athletes know the value of making wise nutrition choices, but anything that might give a competitive edge, including dietary supplements, can seem attractive. Between 40% and 100% of athletes typically use supplements, depending on the type of sport, level of competition, and the definition of supplements. However, unless the athlete has a nutrient deficiency, supplementation may not improve performance and may have a detrimental effect on both performance and health. Dietary supplements are classified as a subcategory of food, so manufacturers are not required to provide evidence of product safety and efficacy, nor obtain approval from regulatory bodies before marketing supplements. This creates the potential for health risks, and serious adverse effects have been reported from the use of some dietary supplements. Athletes who compete in sports under an anti-doping code must also realize that supplement use exposes them to a risk of ingesting banned substances or precursors of prohibited substances. Government systems of regulations do not include specific laboratory testing for banned substances according to the WADA list, so a separate regulatory framework to evaluate supplements for their risk of provoking a failed doping test is needed. In the high-performance culture typical of elite sport, athletes may use supplements regardless of possible risks. A discussion around medical, physiological, cultural, and ethical questions may be warranted to ensure that the athlete has the information needed to make an informed choice.

Open access

Eric S. Rawson, Mary P. Miles and D. Enette Larson-Meyer

Some dietary supplements are recommended to athletes based on data that supports improved exercise performance. Other dietary supplements are not ergogenic per se, but may improve health, adaptation to exercise, or recovery from injury, and so could help athletes to train and/or compete more effectively. In this review, we describe several dietary supplements that may improve health, exercise adaptation, or recovery. Creatine monohydrate may improve recovery from and adaptation to intense training, recovery from periods of injury with extreme inactivity, cognitive processing, and reduce severity of or enhance recovery from mild traumatic brain injury (mTBI). Omega 3-fatty acid supplementation may also reduce severity of or enhance recovery from mTBI. Replenishment of vitamin D insufficiency or deficiency will likely improve some aspects of immune, bone, and muscle health. Probiotic supplementation can reduce the incidence, duration, and severity of upper respiratory tract infection, which may indirectly improve training or competitive performance. Preliminary data show that gelatin and/or collagen may improve connective tissue health. Some anti-inflammatory supplements, such as curcumin or tart cherry juice, may reduce inflammation and possibly delayed onset muscle soreness (DOMS). Beta-hydroxy beta-methylbutyrate (HMB) does not consistently increase strength and/or lean mass or reduce markers of muscle damage, but more research on recovery from injury that includes periods of extreme inactivity is needed. Several dietary supplements, including creatine monohydrate, omega 3-fatty acids, vitamin D, probiotics, gelatin, and curcumin/tart cherry juice could help athletes train and/or compete more effectively.

Open access

In the article by Gough, L.A., Rimmer, S., Osler, C.J., & Higgins, M.F. (2017). Ingestion of sodium bicarbonate (NaHCO3) following a fatiguing bout of exercise accelerates postexercise acid-base balance recovery and improves subsequent high-intensity cycling time to exhaustion, International Journal of Sport Nutrition and Exercise Metabolism, 27(5), 429–438, doi:10.1123/ijsnem.2017-0065, we did not accurately reflect several content and layout corrections which were needed.

These include:

  1. (a)The key for Figure 1 was erroneously included for Figure 3 (and not for Figure 1).
  2. (b)The abbreviation for PRE was missing from the Figure 1 key.
  3. (c)Figure 3 contained two indicators (+) which were not necessary.

The online version of this article has been corrected. We sincerely apologize for these errors.