Browse

You are looking at 31 - 40 of 97 items for :

  • Physical Education and Coaching x
  • User-accessible content x
Clear All
Open access

Graeme L. Close, Craig Sale, Keith Baar and Stephane Bermon

Injuries are an inevitable consequence of athletic performance with most athletes sustaining one or more during their athletic careers. As many as one in 12 athletes incur an injury during international competitions, many of which result in time lost from training and competition. Injuries to skeletal muscle account for over 40% of all injuries, with the lower leg being the predominant site of injury. Other common injuries include fractures, especially stress fractures in athletes with low energy availability, and injuries to tendons and ligaments, especially those involved in high-impact sports, such as jumping. Given the high prevalence of injury, it is not surprising that there has been a great deal of interest in factors that may reduce the risk of injury, or decrease the recovery time if an injury should occur: One of the main variables explored is nutrition. This review investigates the evidence around various nutrition strategies, including macro- and micronutrients, as well as total energy intake, to reduce the risk of injury and improve recovery time, focusing upon injuries to skeletal muscle, bone, tendons, and ligaments.

Open access

Shona L. Halson, Louise M. Burke and Jeni Pearce

Domestic and international travel represents a regular challenge to high-performance track-and-field athletes, particularly when associated with the pressure of competition or the need to support specialized training (e.g., altitude or heat adaptation). Jet lag is a challenge for transmeridian travelers, while fatigue and alterations to gastrointestinal comfort are associated with many types of long-haul travel. Planning food and fluid intake that is appropriate to the travel itinerary may help to reduce problems. Resynchronization of the body clock is achieved principally through manipulation of zeitgebers, such as light exposure; more investigation of the effects of melatonin, caffeine, and the timing/composition of meals will allow clearer guidelines for their contribution to be prepared. At the destination, the athlete, the team management, and catering providers each play a role in achieving eating practices that support optimal performance and success in achieving the goals of the trip. Although the athlete is ultimately responsible for his or her nutrition plan, best practice by all parties will include pretrip consideration of risks around the quality, quantity, availability, and hygiene standards of the local food supply and the organization of strategies to deal with general travel nutrition challenges as well as issues that are specific to the area or the special needs of the group. Management of buffet-style eating, destination-appropriate protocols around food/water and personal hygiene, and arrangement of special food needs including access to appropriate nutritional support between the traditional “3 meals a day” schedule should be part of the checklist.

Open access

Ricardo J.S. Costa, Beat Knechtle, Mark Tarnopolsky and Martin D. Hoffman

Ultramarathon running events and participation numbers have increased progressively over the past three decades. Besides the exertion of prolonged running with or without a loaded pack, such events are often associated with challenging topography, environmental conditions, acute transient lifestyle discomforts, and/or event-related health complications. These factors create a scenario for greater nutritional needs, while predisposing ultramarathon runners to multiple nutritional intake barriers. The current review aims to explore the physiological and nutritional demands of ultramarathon running and provide general guidance on nutritional requirements for ultramarathon training and competition, including aspects of race nutrition logistics. Research outcomes suggest that daily dietary carbohydrates (up to 12 g·kg−1·day−1) and multiple-transportable carbohydrate intake (∼90 g·hr−1 for running distances ≥3 hr) during exercise support endurance training adaptations and enhance real-time endurance performance. Whether these intake rates are tolerable during ultramarathon competition is questionable from a practical and gastrointestinal perspective. Dietary protocols, such as glycogen manipulation or low-carbohydrate high-fat diets, are currently popular among ultramarathon runners. Despite the latter dietary manipulation showing increased total fat oxidation rates during submaximal exercise, the role in enhancing ultramarathon running performance is currently not supported. Ultramarathon runners may develop varying degrees of both hypohydration and hyperhydration (with accompanying exercise-associated hyponatremia), dependent on event duration, and environmental conditions. To avoid these two extremes, euhydration can generally be maintained through “drinking to thirst.” A well practiced and individualized nutrition strategy is required to optimize training and competition performance in ultramarathon running events, whether they are single stage or multistage.

Open access

Philo U. Saunders, Laura A. Garvican-Lewis, Robert F. Chapman and Julien D. Périard

High-level athletes are always looking at ways to maximize training adaptations for competition performance, and using altered environmental conditions to achieve this outcome has become increasingly popular by elite athletes. Furthermore, a series of potential nutrition and hydration interventions may also optimize the adaptation to altered environments. Altitude training was first used to prepare for competition at altitude, and it still is today; however, more often now, elite athletes embark on a series of altitude training camps to try to improve sea-level performance. Similarly, the use of heat acclimation/acclimatization to optimize performance in hot/humid environmental conditions is a common practice by high-level athletes and is well supported in the scientific literature. More recently, the use of heat training to improve exercise capacity in temperate environments has been investigated and appears to have positive outcomes. This consensus statement will detail the use of both heat and altitude training interventions to optimize performance capacities in elite athletes in both normal environmental conditions and extreme conditions (hot and/or high), with a focus on the importance of nutritional strategies required in these extreme environmental conditions to maximize adaptations conducive to competitive performance enhancement.

Open access

Peter Peeling, Linda M. Castell, Wim Derave, Olivier de Hon and Louise M. Burke

Athletes are exposed to numerous nutritional products, attractively marketed with claims of optimizing health, function, and performance. However, there is limited evidence to support many of these claims, and the efficacy and safety of many products is questionable. The variety of nutritional aids considered for use by track-and-field athletes includes sports foods, performance supplements, and therapeutic nutritional aids. Support for sports foods and five evidence-based performance supplements (caffeine, creatine, nitrate/beetroot juice, β-alanine, and bicarbonate) varies according to the event, the specific scenario of use, and the individual athlete’s goals and responsiveness. Specific challenges include developing protocols to manage repeated use of performance supplements in multievent or heat-final competitions or the interaction between several products which are used concurrently. Potential disadvantages of supplement use include expense, false expectancy, and the risk of ingesting banned substances sometimes present as contaminants. However, a pragmatic approach to the decision-making process for supplement use is recommended. The authors conclude that it is pertinent for sports foods and nutritional supplements to be considered only where a strong evidence base supports their use as safe, legal, and effective and that such supplements are trialed thoroughly by the individual before committing to use in a competition setting.

Open access

Gary J. Slater, Jennifer Sygo and Majke Jorgensen

Although sprint athletes are assumed to primarily be interested in promoting muscle hypertrophy, it is the ability to generate explosive muscle power, optimization of power-to-weight ratio, and enhancement of anaerobic energy generation that are key outcomes of sprint training. This reflects the physique of track sprinters, being characterized as ecto-mesomorphs. Although there is little contemporary data on sprinters dietary habits, given their moderate energy requirements relative to body mass, a carbohydrate intake within the range of 3–6 g·kg−1·day−1 appears reasonable, while ensuring carbohydrate availability is optimized around training. Similarly, although protein needs may be twice general population recommendations, sprint athletes should consume meals containing ∼0.4 g/kg high biological value protein (i.e., easily digested, rich in essential amino acids) every 3–5 hr. Despite the short duration of competitions and relative long-recovery periods between races, nutrition still plays an important role in sprint performance. As energy expenditure moderates during competition, so too should intake of energy and macronutrients to prevent unwanted weight gain. Further adjustments in macronutrient intake may be warranted among athletes contemplating optimization of power-to-weight ratio through reductions in body fat prior to the competitive season. Other novel acute methods of weight loss have also been proposed to enhance power-to-weight ratio, but their implementation should only be considered under professional guidance. Given the metabolic demands of sprinting, a few supplements may be of benefit to athletes in training and/or competition. Their use in competition should be preceded with trialing in training to confirm tolerance and perceived ergogenic potential.

Open access

Aaron J. Coutts

Open access

Mark Messina, Heidi Lynch, Jared M. Dickinson and Katharine E. Reed

Much attention has been given to determining the influence of total protein intake and protein source on gains in lean body mass (LBM) and strength in response to resistance exercise training (RET). Acute studies indicate that whey protein, likely related to its higher leucine content, stimulates muscle protein synthesis to a greater extent than proteins such as soy and casein. Less clear is the extent to which the type of protein supplemented impacts strength and LBM in long-term studies (≥6 weeks). Therefore, a meta-analysis was conducted to compare the effect of supplementation with soy protein to animal protein supplementation on strength and LBM in response to RET. Nine studies involving 266 participants suitable for inclusion in the meta-analysis were identified. Five studies compared whey with soy protein, and four studies compared soy protein with other proteins (beef, milk, or dairy protein). Meta-analysis showed that supplementing RET with whey or soy protein resulted in significant increases in strength but found no difference between groups (bench press: χ2 = 0.02, p = .90; squat: χ2 = 0.22, p = .64). There was no significant effect of whey or soy alone (n = 5) on LBM change and no differences between groups (χ2 = 0.00, p = .96). Strength and LBM both increased significantly in the “other protein” and the soy groups (n = 9), but there were no between-group differences (bench: χ2 = 0.02, p = .88; squat: χ2 = 0.78, p = .38; and LBM: χ2 = 0.06, p = .80). The results of this meta-analysis indicate that soy protein supplementation produces similar gains in strength and LBM in response to RET as whey protein.

Full access

Tim Fletcher, Ken Lodewyk, Katie Glover and Sandra Albione

Purpose: To examine the experiences of a cohort of health and physical education teachers and consultants who were learning to become instructional coaches. Methods: Three surveys and three focus groups were administered to 14 participants over 9 months to consider their experiences of learning to become instructional coaches. Concepts from expectancy-value theory guided analyses of both quantitative and qualitative data. Results: Participants reported positive experiences learning to become instructional coaches. Understanding and importance-utility value increased significantly between the administration of initial and end surveys. Focus group data generally supported quantitative findings while enabling more specific insights to be gained, particularly regarding specific moments of participants’ learning that led to a shift in thinking or practice. Conclusions: Participants valued their experiences learning to become instructional coaches and identified the instructional coaching model as a powerful form of job-embedded professional learning based on teachers’ context-specific needs.

Full access

Joanne G. Mirtschin, Sara F. Forbes, Louise E. Cato, Ida A. Heikura, Nicki Strobel, Rebecca Hall and Louise M. Burke

The authors describe the implementation of a 3-week dietary intervention in elite race walkers at the Australian Institute of Sport, with a focus on the resources and strategies needed to accomplish a complex study of this scale. Interventions involved: traditional guidelines of high carbohydrate (CHO) availability for all training sessions; a periodized CHO diet which integrated sessions with low and high CHO availability within the same total CHO intake; and a ketogenic low-CHO high-fat diet. Seven-day menus and recipes were constructed for a communal eating setting to meet nutritional goals as well as individualized food preferences and special needs. Menus also included nutrition support before, during, and after exercise. Daily monitoring, via observation and food checklists, showed that energy and macronutrient targets were achieved. Diets were matched for energy (∼14.8 MJ/d) and protein (∼2.1 g·kg−1·day−1) and achieved desired differences for fat and CHO, with high CHO availability and periodized CHO availability: CHO = 8.5 g·kg−1·day−1, 60% energy, fat = 20% of energy and low-CHO high-fat diet: 0.5 g·kg−1·day−1 CHO, fat = 78% energy.  There were no differences in micronutrient intake or density between the high CHO availability and periodized CHO availability diets; however, the micronutrient density of the low-CHO high-fat diet was significantly lower. Daily food costs per athlete were similar for each diet (∼AU$ 27 ± 10). Successful implementation and monitoring of dietary interventions in sports nutrition research of the scale of the present study require meticulous planning and the expertise of chefs and sports dietitians. Different approaches to sports nutrition support raise practical challenges around cost, micronutrient density, accommodation of special needs, and sustainability.