Browse

You are looking at 31 - 40 of 265 items for :

  • Sport and Exercise Science/Kinesiology x
  • International Journal of Sports Physiology and Performance x
  • Refine by Access: Content accessible to me x
Clear All
Free access

An Updated Panorama of Blood-Flow-Restriction Methods

Brendan R. Scott, Olivier Girard, Nicholas Rolnick, James R. McKee, and Paul S.R. Goods

Background: Exercise with blood-flow restriction (BFR) is being increasingly used by practitioners working with athletic and clinical populations alike. Most early research combined BFR with low-load resistance training and consistently reported increased muscle size and strength without requiring the heavier loads that are traditionally used for unrestricted resistance training. However, this field has evolved with several different active and passive BFR methods emerging in recent research. Purpose: This commentary aims to synthesize the evolving BFR methods for cohorts ranging from healthy athletes to clinical or load-compromised populations. In addition, real-world considerations for practitioners are highlighted, along with areas requiring further research. Conclusions: The BFR literature now incorporates several active and passive methods, reflecting a growing implementation of BFR in sport and allied health fields. In addition to low-load resistance training, BFR is being combined with high-load resistance exercise, aerobic and anaerobic energy systems training of varying intensities, and sport-specific activities. BFR is also being applied passively in the absence of physical activity during periods of muscle disuse or rehabilitation or prior to exercise as a preconditioning or performance-enhancement technique. These various methods have been reported to improve muscular development; cardiorespiratory fitness; functional capacities; tendon, bone, and vascular adaptations; and physical and sport-specific performance and to reduce pain sensations. However, in emerging BFR fields, many unanswered questions remain to refine best practice.

Free access

The V ˙ O 2 max Legacy of Hill and Lupton (1923)—100 Years On

Grégoire P. Millet, Johannes Burtscher, Nicolas Bourdillon, Giorgio Manferdelli, Martin Burtscher, and Øyvind Sandbakk

Purpose: One hundred years ago, Hill and Lupton introduced the concept of maximal oxygen uptake ( V ˙ O 2 max ), which is regarded as “the principal progenitor of sports physiology.” We provide a succinct overview of the evolvement of research on V ˙ O 2 max , from Hill and Lupton‘s initial findings to current debates on limiting factors for V ˙ O 2 max and the associated role of convective and diffusive components. Furthermore, we update the current use of V ˙ O 2 max in elite endurance sport and clinical settings. Practical Applications and Conclusions: V ˙ O 2 max is a healthy and active centenarian that remains a very important measure in elite endurance sports and additionally contributes as an important vital sign of cardiovascular function and fitness in clinical settings. Over the past 100 years, guidelines for the test protocols and exhaustion criteria, as well as the understanding of limiting factors for V ˙ O 2 max , have improved dramatically. Presently, possibilities of accurate and noninvasive determination of the convective versus diffusive components of V ˙ O 2 max by wearable sensors represent an important future application. V ˙ O 2 max is not only an indicator of cardiorespiratory function, fitness, and endurance performance but also represents an important biomarker of cardiovascular function and health to be included in routine assessment in clinical practice.

Free access

Highly Trained Biathletes With a Fast-Start Pacing Pattern Improve Time-Trial Skiing Performance by Pacing More Evenly

Thomas Losnegard, Magne Lund-Hansen, Erland Vedeler Stubbe, Even Dahlen Granrud, Harri Luchsinger, Øyvind Sandbakk, and Jan Kocbach

Purpose: In sprint biathlon, a J-shaped pacing pattern is commonly used. We investigated whether biathletes with a fast-start pacing pattern increase time-trial skiing and shooting performance by pacing more evenly. Methods: Thirty-eight highly trained biathletes (∼21 y, 27 men) performed an individual 7.5 (3 × 2.5 km for women) or 10-km (3 × 3.3 km for men) time trial on roller skis with a self-selected pacing strategy (day 1). Prone (after lap 1) and standing shooting (after lap 2) stages were performed using paper targets. Based on their pacing strategy in the first time trial (ratio between the initial ∼800-m segment pace on lap 1 and average ∼800-m segment pace on laps 1–3), participants were divided into an intervention group with the fastest starting pace (INT, n = 20) or a control group with a more conservative starting pace (CON, n = 18). On day 2, INT was instructed to reduce their starting pace, while CON was instructed to maintain their day 1 strategy. Results: INT increased their overall time-trial performance more than CON from day 1 to day 2  (mean ± 95% CI; 1.5% ± 0.7% vs 0.0% ± 0.9%, P = .02). From day 1 to day 2, INT reduced their starting pace (5.0% ± 1.5%, P < .01), with reduced ratings of perceived exertion during lap 1 (P < .05). For CON, no change was found for starting pace (−0.8% ± 1.2%) or ratings of perceived exertion between days. No differences were found for shooting performance for either group. Conclusion: Highly trained biathletes with a pronounced fast-start pattern improve skiing performance without any change in shooting performance by pacing more evenly.

Free access

The Relationship Between Isometric and Dynamic Strength Following Resistance Training: A Systematic Review, Meta-Analysis, and Level of Agreement

Lachlan P. James, Jonathon Weakley, Paul Comfort, and Minh Huynh

Background: Maximal lower-body strength can be assessed both dynamically and isometrically; however, the relationship between the changes in these 2 forms of strength following resistance training is not well understood. Purpose: To systematically review and analyze the effects of resistance training on changes in maximal dynamic (1-repetition-maximum back squat, deadlift, and power clean) and position-matched isometric strength (isometric midthigh pull and the isometric squat). In addition, individual-level data were used to quantify the agreement and relationship between changes in dynamic and isometric strength. Methods : Databases were systematically searched to identify eligible articles, and meta-analysis procedures were performed on the extracted data. The raw results from 4 studies were acquired, enabling bias and absolute reliability measures to be calculated using Bland–Altman test of agreement. Results: Eleven studies met the inclusion criteria, which resulted in 29 isometric–dynamic change comparisons. The overall pooled effect was 0.13 in favor of dynamic testing; however, the prediction interval ranged from g = −0.49 to 0.75. There was no evidence of bias (P = .825) between isometric and dynamic tests; however, the reliability coefficient was estimated to be 16%, and the coefficient of variation (%) was 109.27. Conclusions: As a range of future effects can be expected when comparing isometric to dynamic strength changes following resistance training, and limited proportionality exists between changes in these 2 strength qualities, there is strong evidence that isometric and dynamic strength represent separate neuromuscular domains. These findings can be used to inform strength-assessment models in athlete populations.

Free access

Erratum. Determinants of 1500-m Front-Crawl Swimming Performance in Triathletes: Influence of Physiological and Biomechanical Variables

International Journal of Sports Physiology and Performance

Free access

Erratum. Swimming With the COSMED AquaTrainer and K5 Wearable Metabolic System in Breath-by-Breath Mode: Accuracy, Precision, and Repeatability

International Journal of Sports Physiology and Performance

Free access

The Fine-Tuning Approach for Training Monitoring

Daniel Boullosa, João Gustavo Claudino, Jaime Fernandez-Fernandez, Daniel Bok, Irineu Loturco, Matthew Stults-Kolehmainen, Juan García-López, and Carl Foster

Purpose: Monitoring is a fundamental part of the training process to guarantee that the programmed training loads are executed by athletes and result in the intended adaptations and enhanced performance. A number of monitoring tools have emerged during the last century in sport. These tools capture different facets (eg, psychophysiological, physical, biomechanical) of acute training bouts and chronic adaptations while presenting specific advantages and limitations. Therefore, there is a need to identify what tools are more efficient in each sport context for better monitoring of training process. Methods and Results: We present and discuss the fine-tuning approach for training monitoring, which consists of identifying and combining the best monitoring tools with experts’ knowledge in different sport settings, designed to improve (1) the control of actual training loads and (2) understanding of athletes’ training adaptations. Instead of using single-tool approaches or merely subjective decision making, the identification of the best combination of monitoring tools to assist experts’ decisions in each specific context (ie, triangulation) is necessary to better understand the link between acute and chronic adaptations and their impact on health and performance. Future studies should elaborate on the identification of the best combination of monitoring tools for each specific sport setting. Conclusion: The fine-tuning monitoring approach requires the simultaneous use of several valid and practical tools, instead of a single tool, to improve the effectiveness of monitoring practices when added to experts’ knowledge.

Free access

Erratum. Competitive Cross-Country Skiers Have Longer Time to Exhaustion Than Recreational Cross-Country Skiers During Intermittent Work Intervals Normalized to Their Maximal Aerobic Power

International Journal of Sports Physiology and Performance

Free access

Erratum. Inconsistent Effect of Psychometric-Scale Familiarization on the Relationship Between Ratings of Perceived Exertion and External Load Measures in Elite Youth Soccer Players

International Journal of Sports Physiology and Performance

Open access

On-Field Methodological Approach to Monitor the Menstrual Cycle and Hormonal Phases in Elite Female Athletes

Marine Dupuit, Alice Meignié, Tom Chassard, Ludivine Blanquet, Julien LeHeran, Thomas Delaunay, Elise Bernardeau, Jean-François Toussaint, Martine Duclos, and Juliana Antero

Objectives: Currently, there are no guidelines for implementing the monitoring of menstrual status, including the natural menstrual cycle (NC) or oral contraception (OC), in a sport setting. We aimed to provide a feasible, on-field methodological approach for monitoring NC and OC in female athletes. Methods: We developed a smartphone app with daily questionnaires to monitor both NC and OC phases in 19 elite female soccer players (23.7 [4.4] y) over 7 months. Adherence and compliance were evaluated. The NC and OC phases were based on calendar data to establish an individual menstrual profile for each athlete. Results: The initial questionnaire revealed that the vast majority of female players (80%) were interested in monitoring their menstrual status. The online monitoring yielded high athlete adherence (87.0% [14.2%]) with a slight decrease over the winter break and at the end of the championship, which necessitated adaptations to promote compliance. Monitoring identified the specific menstrual pattern of each athlete and highlighted large interindividual variability. Conclusion: This study assesses, for the first time, the interest of female players in monitoring their menstrual status. It provides a new methodological approach, as well as guidelines for optimizing on-field monitoring. It also anticipates some obstacles sport staff may encounter when trying to implement such follow-up. It is essential to better understand the menstrual profile of athletes and determine its potential impacts on well-being and performance.