Browse
Mark S. Freedman, Jackie Lund, Hans van der Mars, and Phillip Ward
Javier T. Gonzalez and Andy J. King
Isotopic tracers can reveal insights into the temporal nature of metabolism and track the fate of ingested substrates. A common use of tracers is to assess aspects of human carbohydrate metabolism during exercise under various established models. The dilution model is used alongside intravenous infusion of tracers to assess carbohydrate appearance and disappearance rates in the circulation, which can be further delineated into exogenous and endogenous sources. The incorporation model can be used to estimate exogenous carbohydrate oxidation rates. Combining methods can provide insight into key factors regulating health and performance, such as muscle and liver glycogen utilization, and the underlying regulation of blood glucose homeostasis before, during, and after exercise. Obtaining accurate, quantifiable data from tracers, however, requires careful consideration of key methodological principles. These include appropriate standardization of pretrial diet, specific tracer choice, whether a background trial is necessary to correct expired breath CO2 enrichments, and if so, what the appropriate background trial should consist of. Researchers must also consider the intensity and pattern of exercise, and the type, amount, and frequency of feeding (if any). The rationale for these considerations is discussed, along with an experimental design checklist and equation list which aims to assist researchers in performing high-quality research on carbohydrate metabolism during exercise using isotopic tracer methods.
Daniel J. Astridge, Peter Peeling, Paul S.R. Goods, Olivier Girard, Jamie Hewlett, Anthony J. Rice, and Martyn J. Binnie
Background: World Rowing’s decision to support the proposed change from a 2000-m to a 1500-m regatta course at the 2028 Olympic Games in Los Angeles is anticipated to have important implications for athlete preparation and race execution during the 2024–2028 quadrennium. Purpose: This commentary aims to provide insight into the expected implications of the reduction in course length heading into the 2028 Games, focusing on the training and monitoring of high-performance rowers, as well as tactical, technical, and pacing considerations for performance. The reduction in event duration (estimated to be ∼90–120 s across all event classes) will lead to an expected ∼5% to 15% increase in relative contribution of anaerobic metabolism. Consequently, adjustment in training periodization priorities toward higher-intensity interventions may be required, especially in the period immediately prior to the games. The critical-power and anaerobic-power-reserve concepts may become more useful tools for structuring exercise programs, evaluating training outcomes, and determining event suitability through individual physiological profiling. Additionally, the adoption of a more constant (flat) pacing strategy, rather than the commonly used reverse J-shaped approach, might be considered for racing over this new distance. Finally, technical aspects, such as stroke rate and gearing, may require adjustment for optimal performance; however, research is clearly required to explore such effects. Conclusions: Our intention is to stimulate discussion and debate, with the provision of practical recommendations that aim to optimize rowers’ preparation for and performance at the 2028 Olympic Games.
Pierre Samozino, Jean Romain Rivière, Pedro Jimenez-Reyes, Matt R. Cross, and Jean-Benoît Morin
When poor reliability of “output” variables is reported, it can be difficult to discern whether blame lies with the measurement (ie, the inputs) or the overarching concept. This commentary addresses this issue, using the force-velocity-power (FvP) profile in jumping to illustrate the interplay between concept, method, and measurement reliability. While FvP testing has risen in popularity and accessibility, some studies have challenged the reliability and subsequent utility of the concept itself without clearly considering the potential for imprecise procedures to impact reliability measures. To this end, simulations based on virtual athletes confirmed that push-off distance and jump-height variability should be <4% to 5% to guarantee well-fitted force–velocity relationships and acceptable typical error (<10%) in FvP outputs, which was in line with previous experimental findings. Thus, while arguably acceptable in isolation, the 5% to 10% variability in push-off distance or jump height reported in the critiquing studies suggests that their methods were not reliable enough (lack of familiarization, inaccurate procedures, or submaximal efforts) to infer underpinning force-production capacities. Instead of challenging only the concept of FvP relationship testing, an alternative conclusion should have considered the context in which the results were observed: If procedures’ and/or tasks’ execution is too variable, FvP outputs will be unreliable. As for some other neuromuscular or physiological testing, the FvP relationship, which magnifies measurement errors, is unreliable when the input measurements or testing procedures are inaccurate independently from the method or concept used. Field “simple” methods require the same methodological rigor as “lab” methods to obtain reliable output data.
Matthew Springham, Robert U. Newton, Anthony J. Strudwick, and Mark Waldron
Biomarkers relating to player “stress balance,” immunological (ie, immunoglobulin-A), and hormonal (ie, testosterone and cortisol [T:C]) status are now commonly used in football. This article is our critical review of the scientific literature relating to the response of these measures to player load and their relationships with player health. The commonly reported relationship between immunoglobulin-A and training or match load highlights its sensitivity to changes in psychophysiological stress and the increased risk of compromised mucosal immunity. This is supported by its close relationship with symptoms of upper respiratory tract infection and its association with perceived fatigue in football players. Testosterone and cortisol concentrations and the testosterone–cortisol ratio are sensitive to changes in player load, but the direction of their response is often inconsistent and is likely influenced by player training status and non-sport-related stressors. Some evidence indicates that sustained periods of high training volume can increase resting testosterone and that sustained periods of low and high training intensity can increase resting cortisol, compromising the testosterone–cortisol ratio. These findings are noteworthy, as recent findings indicate interrelationships between testosterone, cortisol, and testosterone:cortisol and perceived measures of fatigue, sleep quality, and muscle soreness in football players. Variability in individual responses suggests the need for a multivariate and individualized approach to player monitoring. Overall, we consider that there is sufficient evidence to support the use of salivary immunoglobulin-A, testosterone, cortisol, and testosterone:cortisol measures as part of a multivariate, individualized player monitoring system in professional football.
Trine M. Seeberg, Jan Kocbach, Rune Kjøsen Talsnes, Frederic Meyer, Thomas Losnegard, Johannes Tjønnås, Øyvind Sandbakk, and Guro Strøm Solli
Purpose: To investigate the performance effects of video- and sensor-based feedback for implementing a terrain-specific micropacing strategy in cross-country (XC) skiing. Methods: Following a simulated 10-km skating time trial (Race1) on snow, 26 national-level male XC skiers were randomly allocated into an intervention (n = 14) or control group (n = 12), before repeating the race (Race2) 2 days later. Between races, intervention received video- and sensor-based feedback through a theoretical lecture and a practical training session aiming to implement a terrain-specific micropacing strategy focusing on active power production over designated hilltops to save time in the subsequent downhill. The control group only received their overall results and performed a training session with matched training load. Results: From Race1 to Race2, the intervention group increased the total variation of chest acceleration on all hilltops (P < .001) and reduced time compared with the control group in a specifically targeted downhill segment (mean group difference: −0.55 s; 95% confidence interval [CI], −0.9 to −0.19 s; P = .003), as well as in overall time spent in downhill (−14.4 s; 95% CI, −21.4 to −7.4 s; P < .001) and flat terrain (−6.5 s; 95% CI, −11.0 to −1.9 s; P = .006). No between-groups differences were found for either overall uphill terrain (−9.3 s; 95% CI, −31.2 to 13.2 s; P = .426) or total race time (−32.2 s; 95% CI, −100.2 to 35.9 s; P = .339). Conclusion: Targeted training combined with video- and sensor-based feedback led to a successful implementation of a terrain-specific micropacing strategy in XC skiing, which reduced the time spent in downhill and flat terrain for intervention compared with a control group. However, no change in overall performance was observed between the 2 groups of XC skiers.
Robert P. Lamberts, Teun van Erp, Dajo Sanders, Karen E. Welman, and Øyvind Sandbakk
José Afonso, Fábio Yuzo Nakamura, Ivan Baptista, Gonçalo Rendeiro-Pinho, João Brito, and Pedro Figueiredo
Purpose: Microdosing of exercise aims to deliver smaller daily training doses but at a higher weekly frequency, adding up to a similar weekly volume as in nonmicrodosed training. This commentary critically discusses this concept, which appears to be a rebranding of the “old” distributed practice of motor learning. Development: We propose that microdosing should relate to the minimal dose that develops or at least maintains the selected capacities or skills as this training dose matters to practitioners, especially during the in-season period. Moreover, microdosing has been applied mainly to develop strength and endurance, but abilities such as sprinting and changing direction could also be microdosed, as well as technical–tactical skills. Conclusions: The concept of microdosing should be reframed to avoid redundancy with the concept of distributed practice while providing valuable information concerning the minimum doses that still generate the intended effects and the thresholds that determine whether a dose is “micro” or not.