Browse

You are looking at 51 - 60 of 170 items for :

  • Physical Education and Coaching x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: Content accessible to me x
Clear All
Free access

Erratum: Fensham et al. (2021)

International Journal of Sport Nutrition and Exercise Metabolism

Open access

Erratum: Kirk, Langan-Evans, & Morton (2020)

Open access

Sustained Exposure to High Carbohydrate Availability Does Not Influence Iron-Regulatory Responses in Elite Endurance Athletes

Alannah K.A. McKay, Peter Peeling, David B. Pyne, Nicolin Tee, Marijke Welveart, Ida A. Heikura, Avish P. Sharma, Jamie Whitfield, Megan L. Ross, Rachel P.L. van Swelm, Coby M. Laarakkers, and Louise M. Burke

This study implemented a 2-week high carbohydrate (CHO) diet intended to maximize CHO oxidation rates and examined the iron-regulatory response to a 26-km race walking effort. Twenty international-level, male race walkers were assigned to either a novel high CHO diet (MAX = 10 g/kg body mass CHO daily) inclusive of gut-training strategies, or a moderate CHO control diet (CON = 6 g/kg body mass CHO daily) for a 2-week training period. The athletes completed a 26-km race walking test protocol before and after the dietary intervention. Venous blood samples were collected pre-, post-, and 3 hr postexercise and measured for serum ferritin, interleukin-6, and hepcidin-25 concentrations. Similar decreases in serum ferritin (17–23%) occurred postintervention in MAX and CON. At the baseline, CON had a greater postexercise increase in interleukin-6 levels after 26 km of walking (20.1-fold, 95% CI [9.2, 35.7]) compared with MAX (10.2-fold, 95% CI [3.7, 18.7]). A similar finding was evident for hepcidin levels 3 hr postexercise (CON = 10.8-fold, 95% CI [4.8, 21.2]; MAX = 8.8-fold, 95% CI [3.9, 16.4]). Postintervention, there were no substantial differences in the interleukin-6 response (CON = 13.6-fold, 95% CI [9.2, 20.5]; MAX = 11.2-fold, 95% CI [6.5, 21.3]) or hepcidin levels (CON = 7.1-fold, 95% CI [2.1, 15.4]; MAX = 6.3-fold, 95% CI [1.8, 14.6]) between the dietary groups. Higher resting serum ferritin (p = .004) and hotter trial ambient temperatures (p = .014) were associated with greater hepcidin levels 3 hr postexercise. Very high CHO diets employed by endurance athletes to increase CHO oxidation have little impact on iron regulation in elite athletes. It appears that variations in serum ferritin concentration and ambient temperature, rather than dietary CHO, are associated with increased hepcidin concentrations 3 hr postexercise.

Open access

Acknowledgments

Open access

Erratum: Rogers et al. (2021)

Open access

The Hyperhydration Potential of Sodium Bicarbonate and Sodium Citrate

Jason C. Siegler, Amelia J. Carr, William T. Jardine, Lilia Convit, Rebecca Cross, Dale Chapman, Louise M. Burke, and Megan Ross

Buffering agents have not been comprehensively profiled in terms of their capacity to influence water retention prior to exercise. The purpose of this investigation was to profile the fluid retention characteristics of sodium bicarbonate (BIC) and sodium citrate (CIT) to determine the efficacy of these buffering mediums as hyperhydrating agents. Nineteen volunteers (13 males and six females; age = 28.3 ± 4.9 years) completed three trials (randomized and cross-over design). For each trial, a baseline measurement of body mass, capillary blood, and urine was collected prior to ingestion of their respective condition (control condition [CON] = 25 ml/kg artificially sweetened water; BIC condition = CON + 7.5 g/L of sodium in the form of BIC; CIT condition = CON + 7.5 g/L of sodium in the form of CIT). The fluid loads were consumed in four equal aliquots (0, 20, 40 and 60 min; fluid intake was 1.972 ± 361 ml [CON]; 1.977 ± 360 ml [BIC]; 1.953 ± 352 ml [CIT]). Samples were recorded at 20 (body mass and urine) and 60 min (blood) intervals for 180 min. Blood buffering capacity (HCO3 ) was elevated (p < .001) in both BIC (32.1 ± 2.2 mmol/L) and CIT (28.9 ± 3.8 mmol/L) at 180 min compared with CON (25.1 ± 1.8 mmol/L). Plasma volume expansion was greater (p < .001) in both BIC (8.1 ± 1.3%) and CIT (5.9 ± 1.8%) compared with CON (−1.1 ± 1.4%); whereas, total urine production was lower in BIC and CIT at 180 min (BIC vs. CON, mean difference of 370 ± 85 ml; p < .001; CIT vs. CON, mean difference of 239 ± 102 ml; p = .05). There were no increases observed in body mass (p = .9). Under resting conditions, these data suggest BIC and CIT induce a greater plasma hypervolemic response as compared with water alone.

Open access

What’s New for Twenty-Two?

James A. Betts

Full access

Collagen and Vitamin C Supplementation Increases Lower Limb Rate of Force Development

Dana M. Lis, Matthew Jordan, Timothy Lipuma, Tayler Smith, Karine Schaal, and Keith Baar

Background: Exercise and vitamin C-enriched collagen supplementation increase collagen synthesis, potentially increasing matrix density, stiffness, and force transfer. Purpose: To determine whether vitamin C-enriched collagen (hydrolyzed collagen [HC] + C) supplementation improves rate of force development (RFD) alongside a strength training program. Methods: Using a double-blinded parallel design, over 3 weeks, healthy male athletes (n = 50, 18–25 years) were randomly assigned to the intervention (HC + C; 20 g HC + 50 mg vitamin C) or placebo (20 g maltodextrin). Supplements were ingested daily 60 min prior to training. Athletes completed the same targeted maximal muscle power training program. Maximal isometric squats, countermovement jumps, and squat jumps were performed on a force plate at the same time each testing day (baseline, Tests 1, 2, and 3) to measure RFD and maximal force development. Mixed-model analysis of variance compared performance variables across the study timeline, whereas tests were used to compare the change between baseline and Test 3. Results: Over 3 weeks, maximal RFD in the HC + C group returned to baseline, whereas the placebo group remained depressed (p = .18). While both groups showed a decrease in RFD through Test 2, only the treatment group recovered RFD to baseline by Test 3 (p = .036). In the HC + C group, change in countermovement jumps eccentric deceleration impulse (p = .008) and eccentric deceleration RFD (p = .04) was improved. A strong trend was observed for lower limb stiffness assessed in the countermovement jumps (p = .08). No difference was observed in maximal force or squat jump parameters. Conclusion: The HC + C supplementation improved RFD in the squat and countermovement jump alongside training.

Open access

Acknowledgments

Open access

Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training

Oliver C. Witard, Laurent Bannock, and Kevin D. Tipton

The acute response of muscle protein synthesis (MPS) to resistance exercise and nutrition is often used to inform recommendations for exercise programming and dietary interventions, particularly protein nutrition, to support and enhance muscle growth with training. Those recommendations are worthwhile only if there is a predictive relationship between the acute response of MPS and subsequent muscle hypertrophy during resistance exercise training. The metabolic basis for muscle hypertrophy is the dynamic balance between the synthesis and degradation of myofibrillar proteins in muscle. There is ample evidence that the process of MPS is much more responsive to exercise and nutrition interventions than muscle protein breakdown. Thus, it is intuitively satisfying to translate the acute changes in MPS to muscle hypertrophy with training over a longer time frame. Our aim is to examine and critically evaluate the strength and nature of this relationship. Moreover, we examine the methodological and physiological factors related to measurement of MPS and changes in muscle hypertrophy that contribute to uncertainty regarding this relationship. Finally, we attempt to offer recommendations for practical and contextually relevant application of the information available from studies of the acute response of MPS to optimize muscle hypertrophy with training.