Browse

You are looking at 51 - 60 of 164 items for :

  • Physical Education and Coaching x
  • International Journal of Sport Nutrition and Exercise Metabolism x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Erratum: Rogers et al. (2021)

Open access

The Hyperhydration Potential of Sodium Bicarbonate and Sodium Citrate

Jason C. Siegler, Amelia J. Carr, William T. Jardine, Lilia Convit, Rebecca Cross, Dale Chapman, Louise M. Burke, and Megan Ross

Buffering agents have not been comprehensively profiled in terms of their capacity to influence water retention prior to exercise. The purpose of this investigation was to profile the fluid retention characteristics of sodium bicarbonate (BIC) and sodium citrate (CIT) to determine the efficacy of these buffering mediums as hyperhydrating agents. Nineteen volunteers (13 males and six females; age = 28.3 ± 4.9 years) completed three trials (randomized and cross-over design). For each trial, a baseline measurement of body mass, capillary blood, and urine was collected prior to ingestion of their respective condition (control condition [CON] = 25 ml/kg artificially sweetened water; BIC condition = CON + 7.5 g/L of sodium in the form of BIC; CIT condition = CON + 7.5 g/L of sodium in the form of CIT). The fluid loads were consumed in four equal aliquots (0, 20, 40 and 60 min; fluid intake was 1.972 ± 361 ml [CON]; 1.977 ± 360 ml [BIC]; 1.953 ± 352 ml [CIT]). Samples were recorded at 20 (body mass and urine) and 60 min (blood) intervals for 180 min. Blood buffering capacity (HCO3 ) was elevated (p < .001) in both BIC (32.1 ± 2.2 mmol/L) and CIT (28.9 ± 3.8 mmol/L) at 180 min compared with CON (25.1 ± 1.8 mmol/L). Plasma volume expansion was greater (p < .001) in both BIC (8.1 ± 1.3%) and CIT (5.9 ± 1.8%) compared with CON (−1.1 ± 1.4%); whereas, total urine production was lower in BIC and CIT at 180 min (BIC vs. CON, mean difference of 370 ± 85 ml; p < .001; CIT vs. CON, mean difference of 239 ± 102 ml; p = .05). There were no increases observed in body mass (p = .9). Under resting conditions, these data suggest BIC and CIT induce a greater plasma hypervolemic response as compared with water alone.

Open access

What’s New for Twenty-Two?

James A. Betts

Full access

Collagen and Vitamin C Supplementation Increases Lower Limb Rate of Force Development

Dana M. Lis, Matthew Jordan, Timothy Lipuma, Tayler Smith, Karine Schaal, and Keith Baar

Background: Exercise and vitamin C-enriched collagen supplementation increase collagen synthesis, potentially increasing matrix density, stiffness, and force transfer. Purpose: To determine whether vitamin C-enriched collagen (hydrolyzed collagen [HC] + C) supplementation improves rate of force development (RFD) alongside a strength training program. Methods: Using a double-blinded parallel design, over 3 weeks, healthy male athletes (n = 50, 18–25 years) were randomly assigned to the intervention (HC + C; 20 g HC + 50 mg vitamin C) or placebo (20 g maltodextrin). Supplements were ingested daily 60 min prior to training. Athletes completed the same targeted maximal muscle power training program. Maximal isometric squats, countermovement jumps, and squat jumps were performed on a force plate at the same time each testing day (baseline, Tests 1, 2, and 3) to measure RFD and maximal force development. Mixed-model analysis of variance compared performance variables across the study timeline, whereas tests were used to compare the change between baseline and Test 3. Results: Over 3 weeks, maximal RFD in the HC + C group returned to baseline, whereas the placebo group remained depressed (p = .18). While both groups showed a decrease in RFD through Test 2, only the treatment group recovered RFD to baseline by Test 3 (p = .036). In the HC + C group, change in countermovement jumps eccentric deceleration impulse (p = .008) and eccentric deceleration RFD (p = .04) was improved. A strong trend was observed for lower limb stiffness assessed in the countermovement jumps (p = .08). No difference was observed in maximal force or squat jump parameters. Conclusion: The HC + C supplementation improved RFD in the squat and countermovement jump alongside training.

Open access

Acknowledgments

Open access

Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training

Oliver C. Witard, Laurent Bannock, and Kevin D. Tipton

The acute response of muscle protein synthesis (MPS) to resistance exercise and nutrition is often used to inform recommendations for exercise programming and dietary interventions, particularly protein nutrition, to support and enhance muscle growth with training. Those recommendations are worthwhile only if there is a predictive relationship between the acute response of MPS and subsequent muscle hypertrophy during resistance exercise training. The metabolic basis for muscle hypertrophy is the dynamic balance between the synthesis and degradation of myofibrillar proteins in muscle. There is ample evidence that the process of MPS is much more responsive to exercise and nutrition interventions than muscle protein breakdown. Thus, it is intuitively satisfying to translate the acute changes in MPS to muscle hypertrophy with training over a longer time frame. Our aim is to examine and critically evaluate the strength and nature of this relationship. Moreover, we examine the methodological and physiological factors related to measurement of MPS and changes in muscle hypertrophy that contribute to uncertainty regarding this relationship. Finally, we attempt to offer recommendations for practical and contextually relevant application of the information available from studies of the acute response of MPS to optimize muscle hypertrophy with training.

Open access

The Effect of Whole Egg Intake on Muscle Mass: Are the Yolk and Its Nutrients Important?

Heitor O. Santos, Gederson K. Gomes, Brad J. Schoenfeld, and Erick P. de Oliveira

Whole egg may have potential benefits for enhancing muscle mass, independent of its protein content. The yolk comprises ∼40% of the total protein in an egg, as well as containing several nonprotein nutrients that could possess anabolic properties (e.g., microRNAs, vitamins, minerals, lipids, phosphatidic acid and other phospholipids). Therefore, the purpose of this narrative review is to discuss the current evidence as to the possible effects of egg yolk compounds on skeletal muscle accretion beyond those of egg whites alone. The intake of whole egg seems to promote greater myofibrillar protein synthesis than egg white intake in young men. However, limited evidence shows no difference in muscle hypertrophy when comparing the consumption of whole egg versus an isonitrogenous quantity of egg white in young men performing resistance training. Although egg yolk intake seems to promote additional acute increases on myofibrillar protein synthesis, it does not seem to further enhance muscle mass when compared to egg whites when consumed as part of a high-protein dietary patterns, at least in young men. This conclusion is based on very limited evidence and more studies are needed to evaluate the effects of egg yolk (or whole eggs) intake on muscle mass not only in young men, but also in other populations such as women, older adults, and individuals with muscle wasting diseases.

Full access

Increased Performance in Elite Runners Following Individualized Timing of Sodium Bicarbonate Supplementation

Tue A.H. Lassen, Lars Lindstrøm, Simon Lønbro, and Klavs Madsen

The present study investigated individualized sodium bicarbonate (NaHCO3 ) supplementation in elite orienteers and its effects on alkalosis and performance in a simulated sprint orienteering competition. Twenty-one Danish male and female elite orienteers (age = 25.2 ± 3.6 years, height = 176.4 ± 10.9 cm, body mass = 66.6 ± 7.9 kg) were tested twice in order to identify individual time to peak blood bicarbonate (HCO3 peak) following supplementation of 0.3 g/kg body mass NaHCO3 with and without warm-up. The athletes also performed two 3.5 km time-trial runs (TT-runs) following individualized timing of NaHCO3 supplementation (SBS) or placebo (PLA) on separate days in a randomized, double-blind, cross-over design. The occurrence of individual peak HCO3 and pH ranged from 60 to 180 min. Mean HCO3 and pH in SBS were significantly higher compared with PLA 10 min before and following the TT-run (p < .01). SBS improved overall performance in the 3.5 km TT-run by 6 s compared with PLA (775.5 ± 16.2 s vs. 781.4 ± 16.1 s, respectively; p < .05). SBS improved performance in the last half of the TT-run compared with PLA (p < .01). In conclusion, supplementation with NaHCO3 followed by warm-up resulted in individualized alkalosis peaks ranging from 60 to 180 min. Individualized timing of SBS in elite orienteers induced significant alkalosis before and after a 3.5 km TT and improved overall performance time by 6 s, which occurred in the last half of the time trial. The present data show that the anaerobic buffer system is important for performance in these types of endurance events lasting 12–15 min.

Open access

Got Beer? A Systematic Review of Beer and Exercise

Jaison L. Wynne and Patrick B. Wilson

Beer is used to socialize postexercise, celebrate sport victory, and commiserate postdefeat. Rich in polyphenols, beer has antioxidant effects when consumed in moderation, but its alcohol content may confer some negative effects. Despite beer’s popularity, no review has explored its effects on exercise performance, recovery, and adaptation. Thus, a systematic literature search of three databases (PubMed, SPORTDiscus, and Web of Science) was conducted by two reviewers. The search resulted in 16 studies that were appraised and reviewed. The mean PEDro score was 5.1. When individuals are looking to rehydrate postexercise, a low-alcohol beer (<4%) may be more effective. If choosing a beer higher in alcoholic content (>4%), it is advised to pair this with a nonalcoholic option to limit diuresis, particularly when relatively large volumes of fluid (>700 ml) are consumed. Adding Na+ to alcoholic beer may improve rehydration by decreasing fluid losses, but palatability may decrease. These conclusions are largely based on studies that standardized beverage volume, and the results may not apply equally to situations where people ingest fluids and food ad libitum. Ingesting nonalcoholic, polyphenol-rich beer could be an effective strategy for preventing respiratory infections during heavy training. If consumed in moderation, body composition and strength qualities seem largely unaffected by beer. Mixed results that limit sweeping conclusions are owed to variations in study design (i.e., hydration and exercise protocols). Future research should incorporate exercise protocols with higher ecological validity, recruit more women, prioritize chronic study designs, and use ad libitum fluid replacement protocols for more robust conclusions.

Open access

Dietary Intake and Gastrointestinal Integrity in Runners Undertaking High-Intensity Exercise in the Heat

Naroa Etxebarria, Nicole A. Beard, Maree Gleeson, Alice Wallett, Warren A. McDonald, Kate L. Pumpa, and David B. Pyne

Gastrointestinal disturbances are one of the most common issues for endurance athletes during training and competition in the heat. The relationship between typical dietary intake or nutritional interventions and perturbations in or maintenance of gut integrity is unclear. Twelve well-trained male endurance athletes (peak oxygen consumption = 61.4 ± 7.0 ml·kg−1·min−1) completed two trials in a randomized order in 35 °C (heat) and 21 °C (thermoneutral) conditions and kept a detailed nutritional diary for eight consecutive days between the two trials. The treadmill running trials consisted of 15 min at 60% peak oxygen consumption, 15 min at 75% peak oxygen consumption, followed by 8 × 1-min high-intensity efforts. Venous blood samples were taken at the baseline, at the end of each of the three exercise stages, and 1 hr postexercise to measure gut integrity and the permeability biomarker concentration for intestinal fatty-acid-binding protein, lipopolysaccharide, and lipopolysaccharide-binding protein. The runners self-reported gut symptoms 1 hr postexercise and 3 days postexercise. The heat condition induced large (45–370%) increases in intestinal fatty-acid-binding protein, lipopolysaccharide-binding protein, and lipopolysaccharide concentrations compared with the baseline, but induced mild gastrointestinal symptoms. Carbohydrate and polyunsaturated fat intake 24 hr preexercise were associated with less lipopolysaccharide translocation. Protein, carbohydrate, total fat, and polyunsaturated fat intake (8 days) were positively associated with the percentage increase of intestinal fatty-acid-binding protein in both conditions (range of correlations, 95% confidence interval = .62–.93 [.02, .98]). Typical nutrition intake partly explained increases in biomarkers and the attenuation of symptoms induced by moderate- and high-intensity exercise under both heat and thermoneutral conditions.