Browse

You are looking at 61 - 70 of 202 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: Content accessible to me x
Clear All
Free access

Lewis King, SarahJane Cullen, Jean McArdle, Adrian McGoldrick, Jennifer Pugh, Giles Warrington, and Ciara Losty

A large proportion of jockeys report symptoms associated with mental health difficulties (MHDs), yet most do not seek help from professional mental health support services. Due to the paucity of literature in this field, this study sought to explore jockeys’ barriers to, and facilitators of, help-seeking for MHDs. Twelve jockeys participated in semistructured interviews, subsequently analyzed via reflexive thematic analysis. Barriers to help-seeking included the negative perceptions of others (stigma and career implications), cultural norms (masculinity and self-reliance), and low mental health literacy (not knowing where to seek help, minimization of MHDs, negative perceptions of treatment, and recognizing symptoms). Facilitators to help-seeking included education (exposure to psychological support at a younger age), social support (from professionals, jockeys, family, and friends), and media campaigns (high-profile disclosures from jockeys). Findings are consistent with barrier and facilitator studies among general and athletic populations. Applied recommendations and future research considerations are presented throughout the manuscript.

Open access

Laura Duval, Lei Zhang, Anne-Sophie Lauzé, Yu Q. Zhu, Dorothy Barthélemy, Numa Dancause, Mindy F. Levin, and Anatol G. Feldman

We tested the hypothesis that the ipsilateral corticospinal system, like the contralateral corticospinal system, controls the threshold muscle length at which wrist muscles and the stretch reflex begin to act during holding tasks. Transcranial magnetic stimulation was applied over the right primary motor cortex in 21 healthy subjects holding a smooth or coarse block between the hands. Regardless of the lifting force, motor evoked potentials in right wrist flexors were larger for the smooth block. This result was explained based on experimental evidence that motor actions are controlled by shifting spatial stretch reflex thresholds. Thus, the ipsilateral corticospinal system is involved in threshold position control by modulating facilitatory influences of hand skin afferents on motoneurons of wrist muscles during bimanual object manipulation.

Full access

Sally Taunton Miedema, Ali Brian, Adam Pennell, Lauren Lieberman, Larissa True, Collin Webster, and David Stodden

Many interventions feature a singular component approach to targeting children’s motor competency and proficiency. Yet, little is known about the use of integrative interventions to meet the complex developmental needs of children aged 3–6 years. The purpose of this study was to examine the effects of an integrative universally designed intervention on children with and without disabilities’ motor competency and proficiency. We selected children (N = 111; disability = 24; no disability = 87) to participate in either a school-based integrative motor intervention (n = 53) or a control condition (n = 58). Children in the integrative motor intervention both with and without disabilities showed significant improvement in motor competency and proficiency (p < .001) as compared with peers with and without disabilities in a control condition. Early childhood center directors (e.g., preschool and kindergarten) should consider implementing integrative universally designed interventions targeting multiple aspects of motor development to remediate delays in children with and without disabilities.

Full access

Benno M. Nigg

Dr. Richard Nelson contributed to the development of sport biomechanics by being an international facilitator. Together with Dr. Jürg Wartenweiler, he contributed the necessary support and input that allowed the field of Movement and Sports Biomechanics to develop and flourish.

Full access

Robert Shapiro

The author recalls his initial introduction to the field of biomechanics in the Penn State Biomechanics Laboratory, known as the Water Tower, and its positive and profound effect on his lifetime career. Under the directorship of Dr. Richard Nelson, Penn State’s biomechanics program provided the author with a variety of both professional and personal learning opportunities. The author credits these experiences as having a direct relationship to his successful development as teacher, mentor, and researcher.

Full access

Robert W. Norman, Stuart M. McGill, and James R. Potvin

Dr. Richard Nelson is internationally acknowledged in many countries as an extremely important leader in the emergence of biomechanics of human movement as a respected scientific discipline. As his PhD graduates, and, subsequently, their graduates, have become faculty members at many universities, Dr. Nelson’s influence has grown for more than 50 years via several generations of his biomechanics “children.” It was probably never known to him that he also had significant influence on all laboratory-based subdisciplines of the undergraduate and graduate education and faculty research programs of the then new (1967) Department of Kinesiology at the University of Waterloo, Canada. The teaching and research programs included not only biomechanics but also exercise and work physiology, anatomy, biochemistry, and neurophysiology of human movement.

Full access

Doris I. Miller

As the first PhD graduate of the Biomechanics Laboratory at the Pennsylvania State University under the leadership of Dr. Richard C. Nelson, I reflect on my early experience in sport biomechanics there and its influence on some of my subsequent, and typically unpublished, research challenges.