Browse

You are looking at 81 - 90 of 920 items for :

  • User-accessible content x
Clear All
Open access
Open access

Juliana S. Oliveira, Marina B. Pinheiro, Nicola Fairhall, Sarah Walsh, Tristan Chesterfield Franks, Wing Kwok, Adrian Bauman and Catherine Sherrington

Background: Frailty and sarcopenia are common age-related conditions associated with adverse outcomes. Physical activity has been identified as a potential preventive strategy for both frailty and sarcopenia. The authors aimed to investigate the association between physical activity and prevention of frailty and sarcopenia in people aged 65 years and older. Methods: The authors searched for systematic reviews (January 2008 to November 2019) and individual studies (January 2010 to March 2020) in PubMed. Eligible studies were randomized controlled trials and longitudinal studies that investigated the effect of physical activity on frailty and/or sarcopenia in people aged 65 years and older. The Grading of Recommendations Assessment, Development and Evaluation approach was used to rate certainty of evidence. Results: Meta-analysis showed that physical activity probably prevents frailty (4 studies; frailty score pooled standardized mean difference, 0.24; 95% confidence interval, 0.04–0.43; P = .017, I 2 = 57%, moderate certainty evidence). Only one trial investigated physical activity for sarcopenia prevention and did not provide conclusive evidence (risk ratio 1.08; 95% confidence interval, 0.10–12.19). Five observational studies showed positive associations between physical activity and frailty or sarcopenia prevention. Conclusions: Physical activity probably prevents frailty among people aged 65 years and older. The impact of physical activity on the prevention of sarcopenia remains unknown, but observational studies indicate the preventive role of physical activity.

Open access

Amanda L. Ager, Dorien Borms, Magali Bernaert, Vicky Brusselle, Mazarine Claessens, Jean-Sébastien Roy and Ann Cools

Context: Proprioception deficits contribute to persistent and recurring physical disability, particularly with shoulder disorders. Proprioceptive training is thus prescribed in clinical practice. It is unclear whether nonsurgical rehabilitation can optimize shoulder proprioception. Objectives: To summarize the available evidence of conservative rehabilitation (ie, nonsurgical) on proprioception among individuals with shoulder disorders. Evidence Acquisition: PubMed, Web of Science, and EBSCO were systematically searched, from inception until November 24, 2019. Selected articles were systematically assessed, and the methodological quality was established using the Dutch Cochrane Risk of Bias Tool and the Newcastle-Ottawa Quality Assessment Scale. The Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines were utilized for this review. The conservative treatments were categorized as follows: (1) conventional therapy, (2) proprioceptive training, (3) elastic kinesiology tape, and (4) other passive therapies. Evidence Synthesis: Twelve articles were included, yielding 58 healthy control shoulders and 362 shoulders affected by impingement syndrome, glenohumeral dislocations, nonspecific shoulder pain, rotator cuff dysfunction, or subluxation poststroke. The level of agreement between the evaluators was excellent (84.9%), and the studies were evaluated to be of fair to excellent quality (risk of bias: 28.5%–100%). This review suggests, with moderate evidence, that proprioceptive training (upper-body wobble board or flexible foil training) can improve proprioception in the midterm. No decisive evidence exists to suggest that conventional therapy is of added value to enhance shoulder proprioception. Conflicting evidence was found for the improvement of proprioception with the application of elastic kinesiology tape, while moderate evidence suggests that passive modalities, such as microcurrent electrical stimulation and bracing, are not effective for proprioceptive rehabilitation of the shoulder. Conclusions: Proprioceptive training demonstrates the strongest evidence for the effective rehabilitation of individuals with a shoulder proprioceptive deficit. Elastic kinesiology tape does not appear to affect the sense of shoulder proprioception. This review suggests a possible specificity of training effect with shoulder proprioception.

Open access

Kristin Suorsa, Anna Pulakka, Tuija Leskinen, Jaana Pentti, Andreas Holtermann, Olli J. Heinonen, Juha Sunikka, Jussi Vahtera and Sari Stenholm

Background: The accuracy of wrist-worn accelerometers in identifying sedentary time has been scarcely studied in free-living conditions. The aim of this study was to compare daily sedentary time estimates between a thigh-worn accelerometer, which measured sitting and lying postures, and a wrist-worn accelerometer, which measured low levels of movement. Methods: The study population consisted of 259 participants (M age = 62.8 years, SD = 0.9) from the Finnish Retirement and Aging Study (FIREA). Participants wore an Axivity AX3 accelerometer on their mid-thigh and an Actigraph wActiSleep-BT accelerometer on their non-dominant wrist simultaneously for a minimum of 4 days in free-living conditions. Two definitions to estimate daily sedentary time were used for data from the wrist-worn accelerometer: 1) the count cutpoint, ≤1853 counts per minute; and 2) the Euclidean Norm Minus One (ENMO) cutpoint, <30 mg. Results: Compared to the thigh-worn accelerometer, daily sedentary time estimate was 63 min (95% confidence interval [CI] = −53 to −73) lower by the count cutpoint and 50 min (95% CI = 34 to 67) lower by the ENMO cutpoint. The limits of agreement in daily sedentary time estimates between the thigh- and cutpoint methods for wrist-worn accelerometers were wide (the count cutpoint: −117 to 243, the ENMO cutpoint: −212 to 313 min). Conclusions: Currently established cutpoint-based methods to estimate sedentary time from wrist-worn accelerometers result in underestimation of daily sedentary time compared to posture-based estimates of thigh-worn accelerometers. Thus, sedentary time estimates obtained from wrist-worn accelerometers using currently available cutpoint-based methods should be interpreted with caution and future work is needed to improve their accuracy.

Open access

Andreas M. Kasper, S. Andy Sparks, Matthew Hooks, Matthew Skeer, Benjamin Webb, Houman Nia, James P. Morton and Graeme L. Close

Rugby is characterized by frequent high-intensity collisions, resulting in muscle soreness. Players consequently seek strategies to reduce soreness and accelerate recovery, with an emerging method being cannabidiol (CBD), despite anti-doping risks. The prevalence and rationale for CBD use in rugby has not been explored; therefore, we recruited professional male players to complete a survey on CBD. Goodness of fit chi-square (χ2) was used to assess CBD use between codes and player position. Effects of age on use were determined using χ2 tests of independence. Twenty-five teams provided 517 player responses. While the majority of players had never used CBD (p < .001, V = 0.24), 26% had either used it (18%) or were still using it (8%). Significantly more CBD use was observed in rugby union compared with rugby league (p = .004, V = 0.13), but player position was not a factor (p = .760, V = 0.013). CBD use increased with players’ age (p < .001, V = 0.28), with mean use reaching 41% in the players aged 28 years and older category (p < .0001). The players using CBD primarily used the Internet (73%) or another teammate (61%) to obtain information, with only 16% consulting a nutritionist. The main reasons for CBD use were improving recovery/pain (80%) and sleep (78%), with 68% of players reporting a perceived benefit. These data highlight the need for immediate education on the risks of CBD, as well as the need to explore the claims regarding pain and sleep.

Open access

Benjamin J. Narang, Greg Atkinson, Javier T. Gonzalez and James A. Betts

The analysis of time series data is common in nutrition and metabolism research for quantifying the physiological responses to various stimuli. The reduction of many data from a time series into a summary statistic(s) can help quantify and communicate the overall response in a more straightforward way and in line with a specific hypothesis. Nevertheless, many summary statistics have been selected by various researchers, and some approaches are still complex. The time-intensive nature of such calculations can be a burden for especially large data sets and may, therefore, introduce computational errors, which are difficult to recognize and correct. In this short commentary, the authors introduce a newly developed tool that automates many of the processes commonly used by researchers for discrete time series analysis, with particular emphasis on how the tool may be implemented within nutrition and exercise science research.

Full access

Daniel H. Aslan, Joshua M. Collette and Justus D. Ortega

The decline of walking performance is a key determinant of morbidity among older adults. Healthy older adults have been shown to have a 15–20% lower walking economy compared with young adults. However, older adults who run for exercise have a higher walking economy compared with older adults who walk for exercise. Yet, it remains unclear if other aerobic exercises yield similar improvements on walking economy. The purpose of this study was to determine if regular bicycling exercise affects walking economy in older adults. We measured metabolic rate while 33 older adult “bicyclists” or “walkers” and 16 young adults walked on a level treadmill at four speeds between (0.75–1.75 m/s). Across the range of speeds, older bicyclists had a 9–17% greater walking economy compared with older walkers (p = .009). In conclusion, bicycling exercise mitigates the age-related deterioration of walking economy, whereas walking for exercise has a minimal effect on improving walking economy.