Browse

You are looking at 1 - 10 of 582 items for :

  • Sport and Exercise Science/Kinesiology x
  • User-accessible content x
Clear All
Open access

Alannah K.A. McKay, Peter Peeling, David B. Pyne, Nicolin Tee, Marijke Welveart, Ida A. Heikura, Avish P. Sharma, Jamie Whitfield, Megan L. Ross, Rachel P.L. van Swelm, Coby M. Laarakkers, and Louise M. Burke

This study implemented a 2-week high carbohydrate (CHO) diet intended to maximize CHO oxidation rates and examined the iron-regulatory response to a 26-km race walking effort. Twenty international-level, male race walkers were assigned to either a novel high CHO diet (MAX = 10 g/kg body mass CHO daily) inclusive of gut-training strategies, or a moderate CHO control diet (CON = 6 g/kg body mass CHO daily) for a 2-week training period. The athletes completed a 26-km race walking test protocol before and after the dietary intervention. Venous blood samples were collected pre-, post-, and 3 hr postexercise and measured for serum ferritin, interleukin-6, and hepcidin-25 concentrations. Similar decreases in serum ferritin (17–23%) occurred postintervention in MAX and CON. At the baseline, CON had a greater postexercise increase in interleukin-6 levels after 26 km of walking (20.1-fold, 95% CI [9.2, 35.7]) compared with MAX (10.2-fold, 95% CI [3.7, 18.7]). A similar finding was evident for hepcidin levels 3 hr postexercise (CON = 10.8-fold, 95% CI [4.8, 21.2]; MAX = 8.8-fold, 95% CI [3.9, 16.4]). Postintervention, there were no substantial differences in the interleukin-6 response (CON = 13.6-fold, 95% CI [9.2, 20.5]; MAX = 11.2-fold, 95% CI [6.5, 21.3]) or hepcidin levels (CON = 7.1-fold, 95% CI [2.1, 15.4]; MAX = 6.3-fold, 95% CI [1.8, 14.6]) between the dietary groups. Higher resting serum ferritin (p = .004) and hotter trial ambient temperatures (p = .014) were associated with greater hepcidin levels 3 hr postexercise. Very high CHO diets employed by endurance athletes to increase CHO oxidation have little impact on iron regulation in elite athletes. It appears that variations in serum ferritin concentration and ambient temperature, rather than dietary CHO, are associated with increased hepcidin concentrations 3 hr postexercise.

Open access
Open access

Pauliina Husu, Kari Tokola, Henri Vähä-Ypyä, Harri Sievänen, Jaana Suni, Olli J. Heinonen, Jarmo Heiskanen, Kaisu M. Kaikkonen, Kai Savonen, Sami Kokko, and Tommi Vasankari

Background: Studies measuring physical activity (PA) and sedentary behavior on a 24/7 basis are scarce. The present study assessed the feasibility of using an accelerometer at the hip while awake and at the wrist while sleeping to describe 24/7 patterns of physical behavior in working-aged adults by age, sex, and fitness. Methods: The study was based on the FinFit 2017 study where the physical behavior of 20- to 69-year-old Finns was assessed 24/7 by triaxial accelerometer (UKKRM42; UKK Terveyspalvelut Oy, Tampere, Finland). During waking hours, the accelerometer was kept at the right hip and, during time in bed, at the nondominant wrist. PA variables were based on 1-min exponential moving average of mean amplitude deviation of the resultant acceleration signal analyzed in 6-s epochs. The angle for the posture estimation algorithm was used to identify sedentary behavior and standing. Evaluation of time in bed was based on the wrist movement. Fitness was estimated by the 6-min walk test. Results: A total of 2,256 eligible participants (mean age 49.5 years, SD = 13.5, 59% women) wore the accelerometer at the hip 15.7 hr/day (SD = 1.4) and at the wrist 8.3 hr/day (SD = 1.4). Sedentary behavior covered 9 hr 18 min/day (SD = 1.8 hr/day), standing nearly 2 hr/day (SD = 0.9), light PA 3.7 hr/day (SD = 1.3), and moderate to vigorous PA 46 min/day (SD = 26). Participants took 7,451 steps per day (SD = 2,962) on average. Men were most active around noon, while women had activity peaks at noon and at early evening. The low-fit tertile took 1,186 and 1,747 fewer steps per day than the mid- and high-fit tertiles (both p < .001). Conclusions: One triaxial accelerometer with a two wear-site approach provides a feasible method to characterize hour-by-hour patterns of physical behavior among working-aged adults.

Open access

Paul Mackie, Gary Crowfoot, Prajwal Gyawali, Heidi Janssen, Elizabeth Holliday, David Dunstan, and Coralie English

Background: Interrupting prolonged sitting can attenuate postprandial glucose responses in overweight adults. The dose–response effect in stroke survivors is unknown. The authors investigated the effects of interrupting 8 hours of prolonged sitting with increasingly frequent bouts of light-intensity standing-based exercises on the postprandial glucose response in stroke survivors. Methods: Within-participant, laboratory-based, dose-escalation trial. Participants completed three 8-hour conditions: prolonged sitting and 2 experimental conditions. Experimental conditions involved light-intensity standing-based exercises of increasing frequency (2 × 5 min to 6 × 5 min bouts). Postprandial glucose is reported. Results: Twenty-nine stroke survivors (aged 66 y) participated. Interrupting 8 hours of prolonged sitting with light-intensity standing-based exercises every 90 minutes significantly decreased postprandial glucose (positive incremental area under the curve; −1.1 mmol/L·7 h; 95% confidence interval, −2.0 to −0.1). In the morning (08:00–11:00), postprandial glucose decreased during the 4 × 5 minutes and 6 × 5 minutes conditions (positive incremental area under the curve; −0.8 mmol/L·3 h; 95% confidence interval, −1.3 to −0.3 and −0.8 mmol/L·3 h; 95% confidence interval, −1.5 to −0.2, respectively) compared with prolonged sitting. Conclusion: Interrupting 8 hours of prolonged sitting at least every 90 minutes with light-intensity standing-based exercises attenuates postprandial glucose in stroke survivors. During the morning, postprandial glucose is attenuated when sitting is interrupted every 60 and 90 minutes.

Open access

Hillary H. Holmes, Randall T. Fawcett, and Jaimie A. Roper

Walking is an integral indicator of human health commonly investigated while walking overground and with the use of a treadmill. Unlike fixed-speed treadmills, overground walking is dependent on the preferred walking speed under the individuals’ control. Thus, user-driven treadmills may have the ability to better simulate the characteristics of overground walking. This pilot study is the first investigation to compare a user-driven treadmill, a fixed-speed treadmill, and overground walking to understand differences in variability and mean spatiotemporal measures across walking environments. Participants walked fastest overground compared to both fixed and user-driven treadmill conditions. However, gait cycle speed variability in the fixed-speed treadmill condition was significantly lower than the user-driven and overground conditions, with no significant differences present between overground and user-driven treadmill walking. The lack of differences in variability between the user-driven treadmill and overground walking may indicate that the user-driven treadmill can better simulate the variability of overground walking, potentially leading to more natural adaptation and motor control patterns of walking.

Open access

Tetsuo Fukunaga

Open access

Stephen S. Cheung