Browse

You are looking at 1 - 10 of 164 items for :

  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
  • User-accessible content x
Clear All
Full access

Alannah K.A. McKay, Peter Peeling, David B. Pyne, Nicolin Tee, Marijke Welveart, Ida A. Heikura, Avish P. Sharma, Jamie Whitfield, Megan L. Ross, Rachel P.L. van Swelm, Coby M. Laarakkers, and Louise M. Burke

This study implemented a 2-week high carbohydrate (CHO) diet intended to maximize CHO oxidation rates and examined the iron-regulatory response to a 26-km race walking effort. Twenty international-level, male race walkers were assigned to either a novel high CHO diet (MAX = 10 g/kg body mass CHO daily) inclusive of gut-training strategies, or a moderate CHO control diet (CON = 6 g/kg body mass CHO daily) for a 2-week training period. The athletes completed a 26-km race walking test protocol before and after the dietary intervention. Venous blood samples were collected pre-, post-, and 3 hr postexercise and measured for serum ferritin, interleukin-6, and hepcidin-25 concentrations. Similar decreases in serum ferritin (17–23%) occurred postintervention in MAX and CON. At the baseline, CON had a greater postexercise increase in interleukin-6 levels after 26 km of walking (20.1-fold, 95% CI [9.2, 35.7]) compared with MAX (10.2-fold, 95% CI [3.7, 18.7]). A similar finding was evident for hepcidin levels 3 hr postexercise (CON = 10.8-fold, 95% CI [4.8, 21.2]; MAX = 8.8-fold, 95% CI [3.9, 16.4]). Postintervention, there were no substantial differences in the interleukin-6 response (CON = 13.6-fold, 95% CI [9.2, 20.5]; MAX = 11.2-fold, 95% CI [6.5, 21.3]) or hepcidin levels (CON = 7.1-fold, 95% CI [2.1, 15.4]; MAX = 6.3-fold, 95% CI [1.8, 14.6]) between the dietary groups. Higher resting serum ferritin (p = .004) and hotter trial ambient temperatures (p = .014) were associated with greater hepcidin levels 3 hr postexercise. Very high CHO diets employed by endurance athletes to increase CHO oxidation have little impact on iron regulation in elite athletes. It appears that variations in serum ferritin concentration and ambient temperature, rather than dietary CHO, are associated with increased hepcidin concentrations 3 hr postexercise.

Open access
Full access

Henning T. Langer, Agata A. Mossakowski, Suraj Pathak, Mark Mascal, and Keith Baar

Cannabidiol (CBD) has proven clinical benefits in the treatment of seizures, inflammation, and pain. The recent legalization of CBD in many countries has caused increased interest in the drug as an over-the-counter treatment for athletes looking to improve recovery. However, no data on the effects of CBD on the adaptive response to exercise in muscle are available. To address this gap, we eccentrically loaded the tibialis anterior muscle of 14 rats, injected them with a vehicle (n = 7) or 100 mg/kg CBD (n = 7), and measured markers of injury, inflammation, anabolic signaling, and autophagy 18 hr later. Pro-inflammatory signaling through nuclear factor kappa B (NF-kB) (Ser536) increased with loading in both groups; however, the effect was significantly greater (36%) in the vehicle group (p < .05). Simultaneously, anabolic signaling through ribosomal protein S6 kinase beta-1 (S6K1) (Thr389) increased after eccentric contractions in both groups with no difference between vehicle and CBD (p = .66). The ribosomal protein S6 phosphorylation (240/244) increased with stimulation (p < .001) and tended to be higher in the CBD group (p = .09). The ubiquitin-binding protein p62 levels were not modulated by stimulation (p = .6), but they were 46% greater in the CBD compared with the vehicle group (p = .01). Although liver weight did not differ between the groups (p = .99) and levels of proteins associated with stress were similar, we did observe serious side effects in one animal. In conclusion, an acute dose of CBD decreased pro-inflammatory signaling in the tibialis anterior without blunting the anabolic response to exercise in rats. Future research should determine whether these effects translate to improved recovery without altering adaptation in humans.

Open access

Ralph Beneke and Renate M. Leithäuser

Open access

Iñigo Mujika

Open access

Vilton E.L. de Moura e Silva, Jason M. Cholewa, François Billaut, Ralf Jäger, Marcelo C. de Freitas, Fabio S. Lira, and Fabrício E. Rossi

Context: Capsaicinoids and capsinoids (CAP) are natural substances found primarily in chili peppers and other spicy foods that agonize the transient receptor potential vanilloid-1 in the mouth, stomach, and small intestine. Several studies have shown CAP to be a potential antiobesity agent and to exhibit an analgesic effect in both rodents and humans. However, there is no scientific consensus about the effects of CAP on physical exercise performance and its physiological mechanisms of action. Purpose: This systematic review aimed to better elucidate the effects of CAP compounds as ergogenic aids and to discuss underlying mechanisms of action by which this supplement may potentially enhance endurance performance and muscular strength. Conclusions: Among 22 studies included in the review, 14 examined the effects of capsaicinoid or capsinoid compounds on endurance and resistance exercise performance in animals, with 9 studies showing benefits on performance. In humans, 8 studies were included: 3 demonstrated significant acute endurance benefits and 2 showed acute resistance exercise performance benefits compared with a placebo condition. Therefore, while more mechanistic studies are necessary to confirm these outcomes in humans, the available scientific literature appears to suggest that these compounds could be considered an effective nutritional strategy to improve exercise performance.

Open access

Jos J de Koning, Teun van Erp, Rob Lamberts, Stephen Cheung, and Dionne Noordhof