You are looking at 1 - 10 of 582 items for :

  • Sport and Exercise Science/Kinesiology x
  • Psychology and Behavior in Sport/Exercise x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Paul R. Hibbing, Seth A. Creasy, and Jordan A. Carlson

Physical behaviors (e.g., sleep, sedentary behavior, and physical activity) often occur in sustained bouts that are punctuated with brief interruptions. To detect and classify these interrupted bouts, researchers commonly use wearable devices and specialized algorithms. Most algorithms examine the data in chronological order, initiating and terminating bouts whenever specific criteria are met. Consequently, the bouts may encapsulate or overlap with later periods that also meet the activation and termination criteria (i.e., alternative bout solutions). In some cases, it is desirable to compare these alternative bout solutions before making a final classification. Thus, comparison-focused algorithms are needed, which can be used in isolation or in concert with their chronology-focused counterparts. In this technical note, we present a comparison-focused algorithm called CRIB (Clustered Recognition of Interrupted Bouts). It uses agglomerative hierarchical clustering to facilitate the comparison of different bout solutions, with the final classification being made in favor of the smallest number of bouts that comply with user-specified criteria (i.e., limits on the number, individual duration, and cumulative duration of interruptions). For demonstration, we use CRIB to assess bouts of moderate to vigorous physical activity in accelerometer data from the National Health and Nutrition Examination Survey, and we include a comparison against results from two established chronology-focused algorithms. Our discussion explores strengths and limitations of CRIB, as well as potential considerations and applications for using it in future studies. An online vignette ( is available to assist users with implementing CRIB in R.

Open access

John Bellettiere, Supun Nakandala, Fatima Tuz-Zahra, Elisabeth A.H. Winkler, Paul R. Hibbing, Genevieve N. Healy, David W. Dunstan, Neville Owen, Mikael Anne Greenwood-Hickman, Dori E. Rosenberg, Jingjing Zou, Jordan A. Carlson, Chongzhi Di, Lindsay W. Dillon, Marta M. Jankowska, Andrea Z. LaCroix, Nicola D. Ridgers, Rong Zablocki, Arun Kumar, and Loki Natarajan

Background: Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults. Methods: Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35–99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training. Results: Mean errors (activPAL − CHAP-Adult) and 95% limits of agreement were: sedentary time −10.5 (−63.0, 42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout duration −0.6 (−4.0, 2.7) min, usual bout duration −1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m2. Conclusions: Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting.

Open access

William Bellew, Tracy Nau, Ben J. Smith, Melody Ding, and Adrian Bauman

Open access

Samuel R. Nyman

Open access

Suzanne Portegijs, Sandra van Beek, Lilian H.D. van Tuyl, and Cordula Wagner

This study is conducted in order to gain a better understanding of the relationship between physical activity and agitated behavior among older people with dementia, and physical activity and characteristics of long-term care wards. Data were collected among people with dementia living in long-term care facilities (N = 76) by conducting observations at the wards and distributing questionnaires among professional caregivers. The results show that participants are largely inactive (82.8%) and a significant relation was found between the degree of physical activity and characteristics of the ward such as “taking sufficient time,” which relates to the time caregivers take when interacting with residents. This study supports the existing knowledge about the degree of physical activity among people with dementia in long-term care and adds information about the potential influence of organizational factors that could be valuable for daily practice.

Full access

Alexander Ivan B. Posis, John Bellettiere, Rany M. Salem, Michael J. LaMonte, JoAnn E. Manson, Ramon Casanova, Andrea Z. LaCroix, and Aladdin H. Shadyab

The goal of this study was to examine associations between accelerometer-measured physical activity (PA) and sedentary time (ST) with mortality by a genetic risk score (GRS) for longevity. Among 5,446 women, (mean [SD]: age, 78.2 [6.6] years), 1,022 deaths were observed during 33,350 person-years of follow-up. Using multivariable Cox proportional hazards models, higher light PA and moderate to vigorous PA were associated with lower mortality across all GRS for longevity categories (low/medium/high; all ptrend < .001). Higher ST was associated with higher mortality (ptrend across all GRS categories < .001). Interaction tests for PA and ST with the GRS were not statistically significant. Findings support the importance of higher PA and lower ST for reducing mortality risk in older women, regardless of genetic predisposition for longevity.

Full access

Leapetswe Malete, Chelsi Ricketts, Sisi Chen, and Jose Jackson

Background: Growing evidence of lower physical activity (PA), higher sedentary behavior, and prevalence of overweight and obesity in African countries calls for more research on PA behavior and its various correlates in this context. This study examined the proportion of adults meeting World Health Organization PA guidelines from 3 urban regions of Botswana, as well as the relationship among sociodemographic factors, body image, and participation in moderate to vigorous PA. Methods: Using a 2-stage stratified cluster sampling approach, cross-sectional data were collected from 699 participants (females = 66%; M = 32.60 y; SD = 11.96). Results: Overall, 45.8% of participants met World Health Organization PA guidelines. Censored regression analyses indicated that females (B = −221.573, P < .001), and individuals from middle- (B = −331.913, P < .001), and high-income (B = −165.185, P = .036) households spent significantly less minutes in moderate to vigorous PA per week. Evaluative (B = −333.200, P < .001) and affective (B = −158.753, P = .038) components of body image were associated with significantly less minutes spent in moderate to vigorous PA per week. Conclusions: A systematic approach to PA promotion that targets females, middle- to high-income groups, and individuals experiencing body image concerns is needed.

Open access

Nina Vansweevelt, Filip Boen, Jannique van Uffelen, and Jan Seghers

Background: The retirement transition constitutes both a risk and an opportunity for changes in physical activity (PA) and sedentary behavior (SB). The present systematic review aims to summarize the current evidence regarding the differences between socioeconomic status (SES) groups in changes in PA and SB across the retirement transition. Methods: The authors searched 5 databases. Inclusion criteria were: investigating statutory retirement, measuring PA and/or SB at least once before and once after retirement, and reporting information on SES differences. Results are reported by means of a narrative synthesis, combined with harvest plots based on direction of effect. Results: We included 24 papers from 19 studies. Sixteen papers focused on PA, 3 on SB, and 5 investigated both. For total PA, occupational PA, and total sedentary time, nearly all publications reported more favorable changes for high SES groups. For recreational PA, active transport, and screen time, there seemed to be a tendency toward more favorable changes for high SES groups. Changes in household/caregiving PA did not appear to differ between SES groups. Conclusions: Changes in movement behavior during the retirement transition are potentially more favorable for high SES adults. Nonetheless, the differences between SES groups seem to depend on the domain of movement behavior.