You are looking at 1 - 10 of 50 items for :

  • Motor Control x
  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: Content accessible to me x
Clear All
Full access

Koichi Hiraoka, Keita Hashimoto, and Takumi Fukuchi

The present study examined how humans use the target information provided immediately before the onset of motor output to prepare the initial motor command in the target force production task. Twenty healthy individuals participated in this study. A target cursor indicating the target force, and a force cursor indicating the force produced with index finger flexion were presented, and participants produced force in response to the appearance of the force cursor so that it moved toward the target cursor as fast as possible. The rate of force development in a time window of 0–100 ms after the onset of force development, representing the intensity of the initial motor command without online feedback adjustment, was measured. The present findings support the hypotheses that humans use the target information provided immediately before the onset of motor output to prepare the initial motor command, and they simultaneously prepare the initial motor command for the intermediate of multiple potential targets using the information of targets provided in previous trials. Another hypothesis, that humans use the information of the target or motor process of the trial immediately before the current trial to prepare the initial motor command, was not supported.

Full access

Kai-Qi Zhang, Yan-Xia Li, Na Lv, Qiang Ma, Shu-Jun Zhang, Xi Zhao, Kai Wang, Li Li, and Lin Li

Proprioception is essential for precise movement as it helps the body transmit important data about its surroundings to the central nervous system for maintaining body posture and position. This study aimed to investigate the effect of direction and joint angle on upper limb proprioception. Thirty individuals (all males) completed a position reproduction activity in 13 directions and three joint angles. It was discovered that upper limb proprioception is dependent on joint angle, direction, and range of motion. The position reproduction error was found to be dependent on the direction, which had a significantly lower accuracy in the direction with a larger range of motion. In addition, upper limb repositioning errors increased at greater limb elevation angles. Our findings also showed that the joint angle did not significantly affect the absolute error of elbow flexion. With an increase in the elbow flexion, the increase of the gravitational moment of the upper arm and hand coupled with the increase of the muscle arm of the biceps brachii possibly causes slight changes in muscle length perceived by spindles or muscular force perceived by Golgi tendon organs.

Full access

Natsuki Sado, Norihisa Fujii, Eri Nonaka, and Terumitsu Miyazaki

Humans experience unanticipated external postural perturbations and recover their posture faster via involuntary responses than voluntary responses. Previous cross-sectional comparisons between athletes and untrained populations have suggested that daily motor experiences can lead to adaptations in the reflex system, but the temporal aspect of this adaptation has been unclear. Here we show that judokas have an earlier muscle activation response to even non-judo-specific external perturbations compared with an untrained population. The response latency to a backward push-and-release type postural perturbation was compared between male judokas (n = 7, career >13 years, ranging from world champions to prefectural competitors) and untrained nonjudokas (n = 7). Latency was defined as the instant of tibialis anterior muscle activity onset. Judokas exhibited shorter latency (20.6 ± 7.1 ms) than nonjudokas (28.3 ± 8.9 ms). The rank order of latency in judokas did not correlate with their competition performance. We suggest that daily training in responding to perturbations might improve some parts of the sensorimotor pathway relating to postural response latency, and that this excellence in involuntary response is independent of athletic performance. The findings provide a novel perspective for understanding postural control ability in humans.

Full access

Hamed Zarei, Ali Asghar Norasteh, Lauren J. Lieberman, Michael W. Ertel, and Ali Brian

Background: Individuals with visual impairment have balance deficits; therefore, this systematic review aimed to provide comprehensive insights into the balance control of individuals with visual impairments when compared with individuals with full vision. Methods: Primary sources were obtained from eight databases including PubMed, LILACS, Science Direct, SCOPUS, CINAHL, PEDro, CENTRAL, and Web of Science. The search period covered years from inception to January 10, 2022. Results: A total of 20 studies with 29 trials with 1,280 participants were included in the systematic review. The results showed that individuals with sight had better static and dynamic balance than individuals with visual impairment (p = .001). However, individuals with visual impairment had significantly better static balance with visual perturbation and stronger static balance with visual and proprioception perturbation (p = .001). Furthermore, individuals with sight had better balance control than individuals with visual impairment who participated in sports (p = .001). Finally, individuals with visual impairment who participated in sports had better balance control than sedentary people with visual impairment (p = .001). Conclusion: Individuals with visual impairment have defects in both dynamic and static balance when compared to individuals with sight. In addition, balance improved with increasing age in individuals with visual impairment while balance control was dependent on the proprioception and vestibular systems. Also, individuals with sight had better balance than individuals with visual impairment who participated in sports and individuals with visual impairment who participated in sports compared with sedentary people with visual impairment.

Free access

Marie-Reine El-Hage, Alexandra Wendling, Mindy F. Levin, and Anatol G. Feldman

The referent control theory (RCT) for action and perception is an advanced formulation of the equilibrium-point hypothesis. The RCT suggests that rather than directly specifying the desired motor outcome, the nervous system controls action and perception indirectly by setting the values of parameters of physical and physiological laws. This is done independently of values of kinematic and kinetic variables including electromyographic patterns describing the motor outcome. One such parameter—the threshold muscle length, λ, at which motoneurons of a given muscle begin to be recruited, has been identified experimentally. In RCT, a similar parameter, the referent arm position, R, has been defined for multiple arm muscles as the threshold arm position at which arm muscles can be quiescent but activated depending on the deflection of the actual arm position, Q, from R. Changes in R result in reciprocal changes in the activity of opposing muscle groups. We advanced the explanatory power of RCT by combining the usual biomechanical descriptions of motor actions with the identification of the timing of R underlying arm movements made with reversals in three directions and to three different extents. We found that in all movements, periods of minimization of the activity of multiple muscles could be identified at ∼61%–86% of the reaching extent in each direction. These electromyographic minimization periods reflect the spatial coordinates at which the R and Q overlap during the production of movements with reversals. The findings support the concept of the production of arm movement by shifting R.

Full access

Mark Cummings, Aditi Doshi, and Sangeetha Madhavan

Background: Transcranial direct current stimulation (tDCS) has been demonstrated to facilitate motor performance in healthy individuals; however, results are variable. The neuromodulatory effects of tDCS during visuomotor tasks may be influenced by extrinsic visual feedback. However, this interaction between tDCS and visual feedback has not been explored for the lower limb. Hence, our objective was to explore if tDCS over the primary lower limb motor cortex differentially facilitates motor performance based on the availability of visual feedback. Methods: Twenty-two neurotypical adults performed ankle plantarflexion and dorsiflexion movements while tracking a sinusoidal target. Spatiotemporal, spatial, and temporal error were calculated between the ankle position and target. Participants attended two sessions, a week apart, with (Stim) and without (No-Stim) anodal tDCS. Sessions were divided into two blocks containing randomized visual feedback conditions: full, no, and blindfold. During Stim sessions, the first block included the application of tDCS to the lower limb M1. Results: Spatiotemporal and spatial error increased as feedback faded (p < .001). A two-way repeated-measures analysis of variance showed a significant interaction between tDCS and visual feedback (p < .05) on spatiotemporal error. Post hoc analyses revealed a significant improvement in spatiotemporal error when visual feedback was absent (p < .01). Spatial and temporal errors were not significantly affected by stimulation or visual feedback. Discussion: Our results suggest that tDCS enhances spatiotemporal ankle motor performance only when visual feedback is not available. These findings indicate that visual feedback may play an important role in demonstrating the effectiveness of tDCS.

Open access

Hangue Park, Alexander N. Klishko, Kyunggeune Oh, Celina Zhang, Gina Grenga, Kinsey R. Herrin, John F. Dalton IV, Robert S. Kistenberg, Michel A. Lemay, Mark Pitkin, Stephen P. DeWeerth, and Boris I. Prilutsky

Cutaneous feedback from feet is involved in regulation of muscle activity during locomotion, and the lack of this feedback results in motor deficits. We tested the hypothesis that locomotor changes caused by local unilateral anesthesia of paw pads in the cat could be reduced/reversed by electrical stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve during stance. Several split-belt conditions were investigated in four adult female cats. In addition, we investigated the effects of similar distal tibial nerve stimulation on overground walking of one male cat that had a transtibial, bone-anchored prosthesis for 29 months and, thus, had no cutaneous/proprioceptive feedback from the foot. In all treadmill conditions, cats walked with intact cutaneous feedback (control), with right fore- and hindpaw pads anesthetized by lidocaine injections, and with a combination of anesthesia and electrical stimulation of the ipsilateral distal tibial nerve during the stance phase at 1.2× threshold of afferent activation. Electrical stimulation of the distal tibial nerve during the stance phase of walking with anesthetized ipsilateral paw pads reversed or significantly reduced the effects of paw pad anesthesia on several kinematic variables, including lateral center of mass shift, cycle and swing durations, and duty factor. We also found that stimulation of the residual distal tibial nerve in the prosthetic hindlimb often had different effects on kinematics compared with stimulation of the intact hindlimb with paw anesthetized. We suggest that stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve provides functionally meaningful motion-dependent sensory feedback, and stimulation responses depend on limb conditions.

Open access

Dayuan Xu, Jiwon Park, Jiseop Lee, Sungjune Lee, and Jaebum Park

Gravity provides critical information for the adjustment of body movement or manipulation of the handheld object. Indeed, the changes in gravity modify the mechanical constraints of prehensile actions, which may be accompanied by the changes in control strategies. The current study examined the effect of the gravitational force of a handheld object on the control strategies for subactions of multidigit prehension. A total of eight subjects performed prehensile tasks while grasping and lifting the handle by about 250 mm along the vertical direction. The experiment consisted of two conditions: lifting gravity-induced (1g) and weightless (0g) handheld objects. The weightless object condition was implemented utilizing a robot arm that produced a constant antigravitational force of the handle. The current analysis was limited to the two-dimensional grasping plane, and the notion of the virtual finger was employed to formulate the cause–effect chain of elemental variables during the prehensile action. The results of correlation analyses confirmed that decoupled organization of two subsets of mechanical variables was observed in both 1g and 0g conditions. While lifting the handle, the two subsets of variables were assumed to contribute to the grasping and rotational equilibrium, respectively. Notably, the normal forces of the thumb and virtual finger had strong positive correlations. In contrast, the normal forces had no significant relationship with the variables as to the moment of force. We conclude that the gravitational force had no detrimental effect on adjustments of the mechanical variables for the rotational action and its decoupling from the grasping equilibrium.

Open access

Mindy F. Levin and Daniele Piscitelli

There is a lack of conceptual and theoretical clarity among clinicians and researchers regarding the control of motor actions based on the use of the term “motor control.” It is important to differentiate control processes from observations of motor output to improve communication and to make progress in understanding motor disorders and their remediation. This article clarifies terminology related to theoretical concepts underlying the control of motor actions, emphasizing how the term “motor control” is applied in neurorehabilitation. Two major opposing theoretical frameworks are described (i.e., direct and indirect), and their strengths and pitfalls are discussed. Then, based on the proposition that sensorimotor rehabilitation should be predicated on one comprehensive theory instead of an eclectic mix of theories and models, several solutions are offered about how to address controversies in motor learning, optimality, and adaptability of movement.