Browse

You are looking at 1 - 10 of 48 items for :

  • Motor Control x
  • Athletic Training, Therapy, and Rehabilitation x
  • Sport and Exercise Science/Kinesiology x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Vision Is Not Required to Elicit Balance Improvements From Beam Walking Practice

Natalie Richer, Steven M. Peterson, and Daniel P. Ferris

Background: Beam walking is a highly studied assessment of walking balance. Recent research has demonstrated that brief intermittent visual rotations and occlusions can increase the efficacy of beam walking practice on subsequent beam walking without visual perturbations. We sought to examine the influence of full vision removal during practice walking on a treadmill-mounted balance beam. Although visual disruptions improved performance of this task, we hypothesized that removing visual feedback completely would lead to less balance improvements than with normal vision due to the specificity of practice. Methods: Twenty healthy young adults trained to walk at a fixed speed on a treadmill-mounted balance beam for 30 min, either with, or without, normal vision. We compared their balance pre-, during, and posttraining by calculating their step-offs per minute and the percentage change in step-offs per minute. Results: Balance improved in both groups after training, with no significant difference in percentage change in step-offs between the normal vision and the no vision participants. On average, the no vision participants had twice as many step-offs per minute as the normal vision group during training. Conclusion: Although previous experiments show that intermittent visual perturbations led to large enhancements of the effectiveness of beam walking training, completely removing visual feedback did not alter training effectiveness compared with normal vision training. It is likely a result of sensory reweighting in the absence of vision, where a greater weight was placed on proprioceptive, cutaneous, and vestibular inputs.

Free access

Response of Knee Joint Biomechanics to Landing Under Internal and External Focus of Attention in Female Volleyball Players

Lukáš Slovák, David Zahradník, William M. Land, Javad Sarvestan, Joseph Hamill, and Reza Abdollahipour

The aim of this study was to examine the effect of attentional focus instructions on the biomechanical variables associated with the risk of anterior cruciate ligament injury of the knee joint during a drop landing task using a time series analysis. Ten female volleyball players (age: 20.4 ± 0.8 years, height: 169.7 ± 7.1 cm, mass: 57.6 ± 3.1 kg, experience: 6.3 ± 0.8 years) performed landings from a 50 cm height under three different attentional focus conditions: (1) external focus (focus on landing as soft as possible), (2) internal focus (focus on bending your knees when you land), and (3) control (no-focus instruction). Statistical parameter mapping in the sagittal plane during the crucial first 30% of landing time showed a significant effect of attentional focus instructions. Despite the similarity in landing performance across foci instructions, adopting an external focus instruction promoted reduced vertical ground reaction force and lower sagittal flexion moment during the first 30% of execution time compared to internal focus, suggesting reduced knee loading. Therefore, adopting an external focus of attention was suggested to reduce most biomechanical risk variables in the sagittal plane associated with anterior cruciate ligament injuries, compared to internal focus and control condition. No significant differences were found in the frontal and horizontal planes between the conditions during this crucial interval.

Free access

In Remembrance: The Life and Legacy of Michael T. Turvey (1942–2023)

Michael A. Riley and Dagmar Sternad

Michael T. Turvey passed away on August 12, 2023 at the age of 81. This obituary aims to honor his life and career by highlighting some key events in his personal and professional life, noting some of his many remarkable accomplishments, and emphasizing his exceptional mentorship, friendship, and generosity.

Free access

Identifying Referent Control Variables Underlying Goal-Directed Arm Movements

Marie-Reine El-Hage, Alexandra Wendling, Mindy F. Levin, and Anatol G. Feldman

The referent control theory (RCT) for action and perception is an advanced formulation of the equilibrium-point hypothesis. The RCT suggests that rather than directly specifying the desired motor outcome, the nervous system controls action and perception indirectly by setting the values of parameters of physical and physiological laws. This is done independently of values of kinematic and kinetic variables including electromyographic patterns describing the motor outcome. One such parameter—the threshold muscle length, λ, at which motoneurons of a given muscle begin to be recruited, has been identified experimentally. In RCT, a similar parameter, the referent arm position, R, has been defined for multiple arm muscles as the threshold arm position at which arm muscles can be quiescent but activated depending on the deflection of the actual arm position, Q, from R. Changes in R result in reciprocal changes in the activity of opposing muscle groups. We advanced the explanatory power of RCT by combining the usual biomechanical descriptions of motor actions with the identification of the timing of R underlying arm movements made with reversals in three directions and to three different extents. We found that in all movements, periods of minimization of the activity of multiple muscles could be identified at ∼61%–86% of the reaching extent in each direction. These electromyographic minimization periods reflect the spatial coordinates at which the R and Q overlap during the production of movements with reversals. The findings support the concept of the production of arm movement by shifting R.

Open access

Introduction to the Special Z-Issue in Honor of the 90th Birthday of Vladimir M. Zatsiorsky

Mark L. Latash

Open access

Electrical Stimulation of Distal Tibial Nerve During Stance Phase of Walking May Reverse Effects of Unilateral Paw Pad Anesthesia in the Cat

Hangue Park, Alexander N. Klishko, Kyunggeune Oh, Celina Zhang, Gina Grenga, Kinsey R. Herrin, John F. Dalton IV, Robert S. Kistenberg, Michel A. Lemay, Mark Pitkin, Stephen P. DeWeerth, and Boris I. Prilutsky

Cutaneous feedback from feet is involved in regulation of muscle activity during locomotion, and the lack of this feedback results in motor deficits. We tested the hypothesis that locomotor changes caused by local unilateral anesthesia of paw pads in the cat could be reduced/reversed by electrical stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve during stance. Several split-belt conditions were investigated in four adult female cats. In addition, we investigated the effects of similar distal tibial nerve stimulation on overground walking of one male cat that had a transtibial, bone-anchored prosthesis for 29 months and, thus, had no cutaneous/proprioceptive feedback from the foot. In all treadmill conditions, cats walked with intact cutaneous feedback (control), with right fore- and hindpaw pads anesthetized by lidocaine injections, and with a combination of anesthesia and electrical stimulation of the ipsilateral distal tibial nerve during the stance phase at 1.2× threshold of afferent activation. Electrical stimulation of the distal tibial nerve during the stance phase of walking with anesthetized ipsilateral paw pads reversed or significantly reduced the effects of paw pad anesthesia on several kinematic variables, including lateral center of mass shift, cycle and swing durations, and duty factor. We also found that stimulation of the residual distal tibial nerve in the prosthetic hindlimb often had different effects on kinematics compared with stimulation of the intact hindlimb with paw anesthetized. We suggest that stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve provides functionally meaningful motion-dependent sensory feedback, and stimulation responses depend on limb conditions.

Open access

Decoupled Control of Grasp and Rotation Constraints During Prehension of Weightless Objects

Dayuan Xu, Jiwon Park, Jiseop Lee, Sungjune Lee, and Jaebum Park

Gravity provides critical information for the adjustment of body movement or manipulation of the handheld object. Indeed, the changes in gravity modify the mechanical constraints of prehensile actions, which may be accompanied by the changes in control strategies. The current study examined the effect of the gravitational force of a handheld object on the control strategies for subactions of multidigit prehension. A total of eight subjects performed prehensile tasks while grasping and lifting the handle by about 250 mm along the vertical direction. The experiment consisted of two conditions: lifting gravity-induced (1g) and weightless (0g) handheld objects. The weightless object condition was implemented utilizing a robot arm that produced a constant antigravitational force of the handle. The current analysis was limited to the two-dimensional grasping plane, and the notion of the virtual finger was employed to formulate the cause–effect chain of elemental variables during the prehensile action. The results of correlation analyses confirmed that decoupled organization of two subsets of mechanical variables was observed in both 1g and 0g conditions. While lifting the handle, the two subsets of variables were assumed to contribute to the grasping and rotational equilibrium, respectively. Notably, the normal forces of the thumb and virtual finger had strong positive correlations. In contrast, the normal forces had no significant relationship with the variables as to the moment of force. We conclude that the gravitational force had no detrimental effect on adjustments of the mechanical variables for the rotational action and its decoupling from the grasping equilibrium.

Open access

Motor Control: A Conceptual Framework for Rehabilitation

Mindy F. Levin and Daniele Piscitelli

There is a lack of conceptual and theoretical clarity among clinicians and researchers regarding the control of motor actions based on the use of the term “motor control.” It is important to differentiate control processes from observations of motor output to improve communication and to make progress in understanding motor disorders and their remediation. This article clarifies terminology related to theoretical concepts underlying the control of motor actions, emphasizing how the term “motor control” is applied in neurorehabilitation. Two major opposing theoretical frameworks are described (i.e., direct and indirect), and their strengths and pitfalls are discussed. Then, based on the proposition that sensorimotor rehabilitation should be predicated on one comprehensive theory instead of an eclectic mix of theories and models, several solutions are offered about how to address controversies in motor learning, optimality, and adaptability of movement.

Open access

Levels of Gnostic Functions in Top Karate Athletes—A Pilot Study

Tatiana Tapajcikova, Dávid Líška, Ladislav Batalik, Clea P. Tucker, and Alena Kobesova

High-quality sensory perception and body scheme (somatognosis) are important aspects for sport performance. This study compares stereognosis, body scheme, and kinesthesia in a group of 36 competitive karate athletes against a control group of 32 general population participants. The stereognosis Petrie test, two body scheme tests, and three kinesthesia tests served as outcome measurement tools. No significant difference was found in the stereognosis Petrie test, for the dominant (p = .389) or the nondominant (p = .791) hand, nor in the kinesthesia test (dominant, p = .661 and nondominant, p = .051). Karate athletes performed significantly better in the body scheme tests, that is, fist width estimation (p = .024) and shoulder width estimation (p = .019), as well as in karate-specific kinesthesia tests, that is, single punch (p = .010) and triple punch (p = .001). This study confirms competitive karate athletes have significantly better somatognosis, and better accuracy when performing quick dynamic movements compared with the general population.

Open access

Effect of Object Texture and Weight on Ipsilateral Corticospinal Influences During Bimanual Holding in Humans

Laura Duval, Lei Zhang, Anne-Sophie Lauzé, Yu Q. Zhu, Dorothy Barthélemy, Numa Dancause, Mindy F. Levin, and Anatol G. Feldman

We tested the hypothesis that the ipsilateral corticospinal system, like the contralateral corticospinal system, controls the threshold muscle length at which wrist muscles and the stretch reflex begin to act during holding tasks. Transcranial magnetic stimulation was applied over the right primary motor cortex in 21 healthy subjects holding a smooth or coarse block between the hands. Regardless of the lifting force, motor evoked potentials in right wrist flexors were larger for the smooth block. This result was explained based on experimental evidence that motor actions are controlled by shifting spatial stretch reflex thresholds. Thus, the ipsilateral corticospinal system is involved in threshold position control by modulating facilitatory influences of hand skin afferents on motoneurons of wrist muscles during bimanual object manipulation.