Browse

You are looking at 1 - 10 of 763 items for :

  • Physical Education and Coaching x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Coingestion of Collagen With Whey Protein Prevents Postexercise Decline in Plasma Glycine Availability in Recreationally Active Men

Thorben Aussieker, Tom A.H. Janssen, Wesley J.H. Hermans, Andrew M. Holwerda, Joan M. Senden, Janneau M.X. van Kranenburg, Joy P.B. Goessens, Tim Snijders, and Luc J.C. van Loon

Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m−2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged −8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.

Free access

Sport Science, Geopolitics, and How Each of Us Can Make a Difference

Jos J. de Koning, Carl Foster, David B. Pyne, Ralph Beneke, and Øyvind Sandbakk

Free access

Erratum. Position Paper: Rationale for a Focused Attention on Mental Health of High-Performance Sports Coaches

International Sport Coaching Journal

Free access

Erratum. Absence of Monotony and Strain Effects on Referees’ Physical Performance During International Basketball Federation World Cup Basketball Competition

International Journal of Sports Physiology and Performance

Free access

Erratum. Addressing Circadian Disruptions in Visually Impaired Paralympic Athletes

International Journal of Sports Physiology and Performance

Free access

Strategies to Involve End Users in Sport-Science Research

Christopher J. Stevens and Christian Swann

Free access

Caffeine, but Not Creatine, Improves Anaerobic Power Without Altering Anaerobic Capacity in Healthy Men During a Wingate Anaerobic Test

Alisson Henrique Marinho, Marcos David Silva-Cavalcante, Gislaine Cristina-Souza, Filipe Antonio de Barros Sousa, Thays Ataide-Silva, Romulo Bertuzzi, Gustavo Gomes de Araujo, and Adriano Eduardo Lima-Silva

There is a lack of evidence on the additional benefits of combining caffeine (CAF) and creatine (CRE) supplementation on anaerobic power and capacity. Thus, the aim of the present study was to test the effects of combined and isolated supplementation of CAF and CRE on anaerobic power and capacity. Twenty-four healthy men performed a baseline Wingate anaerobic test and were then allocated into a CRE (n = 12) or placebo (PLA; n = 12) group. The CRE group ingested 20 g/day of CRE for 8 days, while the PLA group ingested 20 g/day of maltodextrin for the same period. On the sixth and eighth days of the loading period, both groups performed a Wingate anaerobic test 1 hr after either CAF (5 mg/kg of body mass; CRE + CAF and PLA + CAF conditions) or PLA (5 mg/kg of body mass of cellulose; CRE + PLA and PLA + PLA conditions) ingestion. After the loading period, changes in body mass were greater (p < .05) in the CRE (+0.87 ± 0.23 kg) than in the PLA group (+0.13 ± 0.27 kg). In both groups, peak power was higher (p = .01) in the CAF (1,033.4 ± 209.3 W) than in the PLA trial (1,003.3 ± 204.4 W), but mean power was not different between PLA and CAF trials (p > .05). In conclusion, CAF, but not CRE ingestion, increases anaerobic power. Conversely, neither CRE nor CAF has an effect on anaerobic capacity.

Open access

Trehalose Improved 20-min Cycling Time-Trial Performance After 100-min Cycling in Amateur Cyclists

Nathan Gobbi de Oliveira, Luana Farias de Oliveira, Rafael Pires da Silva, Tamires Nunes Oliveira, Gabriella Berwig Möller, Juliana Murasaki, Manoel Antônio Ramires, Rafael de Almeida Azevedo, Guilherme Giannini Artioli, Hamilton Roschel, Bruno Gualano, and Bryan Saunders

Carbohydrate (CHO) supplementation during endurance exercise can improve performance. However, it is unclear whether low glycemic index (GI) CHO leads to differential ergogenic and metabolic effects compared with a standard high GI CHO. This study investigated the ergogenic and metabolic effects of CHO supplementation with distinct GIs, namely, (a) trehalose (30 g/hr), (b) isomaltulose (30 g/hr), (c) maltodextrin (60 g/hr), and (d) placebo (water). In this double-blind, crossover, counterbalanced, placebo-controlled study, 13 male cyclists cycled a total of 100 min at varied exercise intensity (i.e., 10-min stages at 1.5, 2.0, and 2.5 W/kg; repeated three times plus two 5-min stages at 1.0 W/kg before and after the protocol), followed by a 20-min time trial on four separated occasions. Blood glucose and lactate (every 20 min), heart rate, and ratings of perceived exertion were collected throughout, and muscle biopsies were taken before and immediately after exercise. The results showed that trehalose improved time-trial performance compared with placebo (total work done 302 ± 39 vs. 287 ± 48 kJ; p = .01), with no other differences between sessions (all p ≥ .07). Throughout the 100-min protocol, blood glucose was higher with maltodextrin compared with the other supplements at all time points (all p < .05). Heart rate, ratings of perceived exertion, muscle glycogen content, blood glucose, and lactate were not different between conditions when considering the 20-min time trial (all p > .05). Trehalose supplementation throughout endurance exercise improved cycling performance and appears to be an appropriate CHO source for exercise tasks up to 2 hr. No ergogenic superiority between the different types of CHO was established.

Free access

Academic Life: The Good, the Bad, and the Ugly

Robert P. Lamberts and N. Tim Cable

Free access

Scholarly Book Reviews in the Journal of Teaching in Physical Education

Michael A. Hemphill