Browse

You are looking at 1 - 10 of 310 items for :

  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: Content accessible to me x
Clear All
Open access

Graig M. Chow, Lindsay M. Garinger, Jaison Freeman, Savanna K. Ward, and Matthew D. Bird

The aim of this study was to investigate expert practitioners’ approaches to conducting a first sport psychology session with individual clients as there is sparse empirical literature on this topic. Nine expert Certified Mental Performance Consultants completed a semistructured interview where they discussed experiences conducting a first meeting with an athlete. Primary objectives included establishing the relationship, setting guidelines and expectations, understanding the client’s background, identifying presenting concerns, and formulating the treatment plan and building skills. Building rapport was an aspect used to establish the relationship while discussing confidentiality was utilized to set guidelines. Important strategies employed to increase the perceived benefits to services included conveying the consulting approach and philosophy. Lessons learned centered around doing too much and not appreciating individual differences of clients. Findings show expert consultants aim to achieve similar broad objectives in the first session and provide a basis for best practices in this area.

Full access

Erik T. Hummer, Tanner Thorsen, Joshua T. Weinhandl, Jeffrey A. Reinbolt, Harrold Cates, and Songning Zhang

Patients following unilateral total knee arthroplasty (TKA) display interlimb differences in knee joint kinetics during gait and more recently, stationary cycling. The purpose of this study was to use musculoskeletal modeling to estimate total, medial, and lateral tibiofemoral compressive forces for patients following TKA during stationary cycling. Fifteen patients of unilateral TKA, from the same surgeon, participated in cycling at 2 workrates (80 and 100 W). A knee model (OpenSim 3.2) was used to estimate total, medial, and lateral tibiofemoral compressive forces for replaced and nonreplaced limbs. A 2 × 2 (limb × workrate) and a 2 × 2 × 2 (compartment × limb × workrate) analysis of variance were run on the selected variables. Peak medial tibiofemoral compressive force was 23.5% lower for replaced compared to nonreplaced limbs (P = .004, G = 0.80). Peak medial tibiofemoral compressive force was 48.0% greater than peak lateral tibiofemoral compressive force in nonreplaced limbs (MD = 344.5 N, P < .001, G = 1.6) with no difference in replaced limbs (P = .274). Following TKA, patients have greater medial compartment loading on their nonreplaced compared to their replaced limbs and ipsilateral lateral compartment loading. This disproportionate loading may be cause for concern regarding exacerbating contralateral knee osteoarthritis.

Open access

Ju-Yul Yoon, Seung-Rok Kang, Hye-Seong Kim, Yu Hui Won, Sung-Hee Park, Jeong-Hwan Seo, Myoung-Hwan Ko, and Gi-Wook Kim

Context: Whole-body vibration (WBV) training improves muscle strength and balance. Few studies have focused on the effects of WBV frequencies below 30 Hz. We aimed to investigate the effect of low-frequency WBV training on muscle activity, fatigue recovery, and oxygen consumption (VO2). Design: Prospective single-group, repeated-measures study. Methods: In this controlled laboratory setting study, 20 healthy adults (age 23.26 [1.66] y) performed half squats at 0, 4, 6, 8, 12, 16, 20, 24, and 30-Hz WBV. Muscle activity was evaluated using the root mean square and peak electromyography amplitude of 6 muscles (iliocostalis, rectus abdominis, rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius) obtained via surface electromyography. VO2 was measured during the squats using a gas analyzer, and fatigue recovery was evaluated using measurements of lactate after the squats and after a recovery period. Statistical significance was set at P < .05, and analysis of variance was conducted to determine differences in muscle activity, fatigue, recovery, and VO2, with post hoc analyses as appropriate. Results: Of the 6 muscles measured, the muscle activity of the gastrocnemius alone significantly increased from 0 Hz at 4, 8, 12, 16, 24, and 30 Hz based on the root mean square values and at 4, 8, 12, and 30 Hz based on the peak electromyography amplitude values. There were no significant differences in the other muscles. There were no significant differences in VO2 or in lactate levels. Conclusions: Low-frequency WBV during squat exercises significantly increased the activity of the gastrocnemius medialis only at specific frequencies in healthy young adults. Low-frequency WBV is safe and has the potential to increase muscle activity.

Full access

Tal Krasovsky, Rawda Madi, Eyal Fruchter, Elias Jahjah, and Roee Holtzer

Texting while walking is an increasingly common, potentially dangerous task but its functional brain correlates have yet to be reported. Therefore, we evaluated prefrontal cortex (PFC) activation patterns during single- and dual-task texting and walking in healthy adults. Thirteen participants (29–49 years) walked under single- and dual-task conditions involving mobile phone texting or a serial-7s subtraction task, while measuring PFC activation (functional near-infrared spectroscopy) and behavioral task performance (inertial sensors, mobile application). Head lowering during texting increased PFC activation. Texting further increased PFC activation, and decreased gait performance similarly to serial-7 subtraction. Our results support the key role of executive control in texting while walking.

Full access

Fatemeh Zahed and Max Berniker

Reaches in experimental settings are commonly found to be straight. This straightness is robust to physical, but not visual, perturbations. Here, we question whether typical visual feedback contributes to this finding by implicitly promoting straight movements. To do so, we replaced the conventional feedback depicting the hand’s location with feedback depicting the limb’s orientation. Reaching movements with three different visual feedback conditions were examined. In the final condition, the subject’s arm was depicted as two rotating links, and targets were depicted as two links indicating a desired arm posture. We found that by replacing standard cursor feedback, reaches became curved and arched to the target. Our findings further demonstrate that depicted feedback influences movements, and feedback depicting the limb, in particular, may elicit curved reaches.

Full access

Shuaijie Wang, Yi-Chung (Clive) Pai, and Tanvi Bhatt

Older adults could experience split falls or feet-forward falls following an unexpected slip in gait due to different neuromuscular vulnerabilities, and different intervention strategies would be required for each type of faller. Thus, this study aimed to investigate the key factors affecting the fall types based on regular gait pattern. A total of 105 healthy older adults who experienced a laboratory-induced slip and fall were included. Their natural walking trial immediately prior to the novel slip trial was analyzed. To identify the factors related to fall type, gait characteristics and demographic factors were determined using univariate logistic regression, and then stepwise logistic regression was conducted to assess the slip-induced fall type based on these factors. The best fall-type prediction model involves gait speed and recovery foot angular velocity, which could predict 70.5% of feet-forward falls and 86.9% of split falls. Body mass index was also a crucial fall-type prediction with an overall prediction accuracy of 70.5%. Along with gait parameters, 84.1% of feet-forward falls and 78.7% of split falls could be predicted. The findings in this study revealed the determinators related to fall types, which enhances our knowledge of the mechanism associated to slip-induced fall and would be helpful for the development of tailored interventions for slip-induced fall prevention.

Full access

Gabriella M. Milef, Logan E. Miller, Daniella M. DiGuglielmo, Tanner D. Payne, Tanner M. Filben, Jillian E. Urban, and Joel D. Stitzel

Head impact exposure is often quantified using peak resultant kinematics. While kinematics describes the inertial response of the brain to impact, they do not fully capture the dynamic brain response. Strain, a measure of the tissue-level response of the brain, may be a better predictor of injury. In this study, kinematic and strain metrics were compared to contact characteristics in youth football. Players on 2 opposing teams were instrumented with head impact sensors to record impact kinematics. Video was collected to identify contact scenarios involving opposing instrumented players (ie, paired contact scenarios) and code contact characteristics (eg, player role, impact location). A previously validated, high-resolution brain finite element model, the atlas-based brain model, was used to simulate head impacts and calculate strain metrics. Fifty-two paired contact scenarios (n = 105 impacts) were evaluated. Lighter players tended to have greater biomechanical metrics compared to heavier players. Impacts to the top of the helmet were associated with lower strain metrics. Overall, strain was better correlated with rotational kinematics, suggesting these metrics may be better predictors of the tissue-level brain response than linear kinematics. Understanding the effect of contact characteristics on brain strain will inform future efforts to improve sport safety.

Open access

Ashley N. Marshall and Jennifer S. Howard