Browse

You are looking at 1 - 10 of 719 items for :

  • Physical Education and Coaching x
  • Refine by Access: Content accessible to me x
Clear All
Free access

Bringing on the Next Generation of Sport Scientists: The Benefits of Work-Integrated Learning

David B. Pyne

Free access

Erratum: Developing Coaches’ Knowledge of the Athlete–Coach Relationship Through Formal Coach Education: The Perceptions of Football Association Coach Developers

International Sport Coaching Journal

Free access

International Council for Coaching Excellence (ICCE) 14th Global Coach Conference

Free access

The Future of Para Report Cards on Physical Activity of Children and Adolescents With Disabilities—A Global Call for Engagement, Data, and Advocacy

Mark S. Tremblay, Iryna Demchenko, John J. Reilly, Salomé Aubert, and Cindy Sit

Full access

Guarana (Paullinia cupana) but Not Low-Dose Caffeine Improves Cycling Time-Trial Performance Versus Placebo

Eduardo M. Penna, Alec Harp, Brian Hack, Tyler N. Talik, and Melinda Millard-Stafford

Guarana (GUA) seed extract, containing caffeine (CAF) and additional bioactive compounds, may positively affect mental performance, but evidence regarding exercise is limited. This investigation assessed acute GUA ingestion compared with CAF on endurance performance. Eleven endurance-trained noncyclists and cyclists ( V ˙ O 2 peak  = 49.7 ± 5.9, 60.4 ± 4.6 ml·kg·min−1) completed a double-blind, crossover experiment after ingesting (a) 100 mg CAF, (b) 500 mg GUA (containing 130 mg CAF), or (c) placebo (P) prior to 60-min fixed cycling workload (FIX) + 15-min time trial. Oxygen uptake, heart rate, respiratory exchange ratio, blood glucose, and lactate were not different (p ≥ .052) during FIX. A significant interaction (p = .042) for perceived exertion was observed at 50-min FIX with lower rating (p = .023) for GUA versus CAF but not compared with P. Work accumulated over 15-min time trial was greater (p = .038) for GUA versus P due to higher early (1–11 min) work outputs. Work performance favored (effect size = 0.18; 95% confidence interval [0.003, 0.355], p = .046) GUA (241.4 ± 39.9 kJ) versus P (232.1 ± 46.6 kJ), but CAF (232.3 ± 43.9) was not different from GUA (effect size = 0.19; 95% confidence interval [−0.022, 0.410], p = .079) or P. Postexercise strength loss was not attenuated with GUA (−5.6 ± 8.5%) or CAF (−8.3 ± 9.4%) versus P (−10.3 ± 5.1%). Acute GUA ingestion improved work performance relative to P, but effects were trivial to small and unrelated to altered substrate oxidation or muscular strength. Ergogenicity may involve central mechanisms reducing perceived effort with GUA (containing 130 mg caffeine). Due to issues related to identical matching of dosage, whether GUA confers additional benefits beyond its CAF content cannot be determined at present.

Open access

“It Looks Good on Paper, But It Was Never Meant to Be Real”: Mixed-Gender Events in the Paralympic Movement

Nikolaus A. Dean, Andrea Bundon, P. David Howe, and Natalie Abele

Although the Paralympic Games have been around for over 60 years, women remain underrepresented in almost all aspects of the Paralympic Movement. It has been suggested that a way to increase women’s involvement is through the implementation of mixed-gender events. On paper, this approach makes sense. However, when it comes to the implementation of mixed-gender opportunities for women, it is less clear how effective these events are in increasing participation by women in Para sport. Through document analysis and interviews with athletes and organizers of mixed-gender Paralympic sport, we explore the various strategies that four mixed-gender sports have used to address the issue of gender parity. Using critical feminist theories, we illustrate how larger social, political, and cultural ideas about gender influence women’s experiences within these events and discuss the potential of using mixed-gender initiatives to address gender parity within the Paralympic Movement.

Open access

Jumping Exercise Combined With Collagen Supplementation Preserves Bone Mineral Density in Elite Cyclists

Luuk Hilkens, Nick van Schijndel, Vera C.R. Weijer, Lieselot Decroix, Judith Bons, Luc J.C. van Loon, and Jan-Willem van Dijk

This study assessed the effect of combined jump training and collagen supplementation on bone mineral density (BMD) in elite road-race cyclists. In this open-label, randomized study with two parallel groups, 36 young (21 ± 3 years) male (n = 8) and female (n = 28) elite road-race cyclists were allocated to either an intervention (INT: n = 18) or a no-treatment control (CON: n = 18) group. The 18-week intervention period, conducted during the off-season, comprised five 5-min bouts of jumping exercise per week, with each bout preceded by the ingestion of 15 g hydrolyzed collagen. Before and after the intervention, BMD of various skeletal sites and trabecular bone score of the lumbar spine were assessed by dual-energy X-ray absorptiometry, along with serum bone turnover markers procollagen Type I N propeptide and carboxy-terminal cross-linking telopeptide of Type I collagen. BMD of the femoral neck decreased in CON (from 0.789 ± 0.104 to 0.774 ± 0.095 g/cm2), while being preserved in INT (from 0.803 ± 0.058 to 0.809 ± 0.066 g/cm2; Time × Treatment, p < .01). No differences between treatments were observed for changes in BMD at the total hip, lumbar spine, and whole body (Time × Treatment, p > .05 for all). Trabecular bone score increased from 1.38 ± 0.08 to 1.40 ± 0.09 in CON and from 1.46 ± 0.08 to 1.47 ± 0.08 in INT, respectively (time effect: p < .01), with no differences between treatments (Time × Treatment: p = .33). Serum procollagen Type I N propeptide concentrations decreased to a similar extent in CON (83.6 ± 24.8 to 71.4 ± 23.1 ng/ml) and INT (82.8 ± 30.7 to 66.3 ± 30.6; time effect, p < .001; Time × Treatment, p = .22). Serum carboxy-terminal cross-linking telopeptide of Type I collagen concentrations did not change over time, with no differences between treatments (time effect, p = .08; Time × Treatment, p = .58). In conclusion, frequent short bouts of jumping exercise combined with collagen supplementation beneficially affects femoral neck BMD in elite road-race cyclists.

Open access

Muscle Mass and Strength Gains Following Resistance Exercise Training in Older Adults 65–75 Years and Older Adults Above 85 Years

Gabriel Nasri Marzuca-Nassr, Andrea Alegría-Molina, Yuri SanMartín-Calísto, Macarena Artigas-Arias, Nolberto Huard, Jorge Sapunar, Luis A. Salazar, Lex B. Verdijk, and Luc J.C. van Loon

Resistance exercise training (RET) can be applied effectively to increase muscle mass and function in older adults (65–75 years). However, it has been speculated that older adults above 85 years are less responsive to the benefits of RET. This study compares the impact of RET on muscle mass and function in healthy older adults 65–75 years versus older adults above 85 years. We subjected 17 healthy older adults 65–75 years (OLDER 65–75, n = 13/4 [female/male]; 68 ± 2 years; 26.9 ± 2.3 kg/m2) and 12 healthy older adults above 85 years (OLDER 85+, n = 7/5 [female/male]; 87 ± 3 years; 26.0 ± 3.6 kg/m2) to 12 weeks of whole-body RET (three times per week). Prior to, and after 6 and 12 weeks of training, quadriceps and lumbar spine vertebra 3 muscle cross-sectional area (computed tomography scan), whole-body lean mass (dual-energy X-ray absorptiometry scan), strength (one-repetition maximum test), and physical performance (timed up and go and short physical performance battery) were assessed. Twelve weeks of RET resulted in a 10% ± 4% and 11% ± 5% increase in quadriceps cross-sectional area (from 46.5 ± 10.7 to 51.1 ± 12.1 cm2, and from 38.9 ± 6.1 to 43.1 ± 8.0 cm2, respectively; p < .001; η2 = .67); a 2% ± 3% and 2% ± 3% increase in whole-body lean mass (p = .001; η2 = .22); and a 38% ± 20% and 46% ± 14% increase in one-repetition maximum leg extension strength (p < .001; η2 = .77) in the OLDER 65–75 and OLDER 85+ groups, respectively. No differences in the responses to RET were observed between groups (Time × Group, all p > .60; all η2 ≤ .012). Physical performance on the short physical performance battery and timed up and go improved (both p < .01; η2 ≥ .22), with no differences between groups (Time × Group, p > .015; η2 ≤ .07). Prolonged RET increases muscle mass, strength, and physical performance in the aging population, with no differences between 65–75 years and 85+ years older adults.

Free access

Erratum. Match Running Performance in Australian Football Is Related to Muscle Fiber Typology

International Journal of Sports Physiology and Performance

Free access

Performance Management in Elite Football: A Teamwork Modeling Approach

Joao Marques and Karim Chamari