You are looking at 1 - 10 of 58 items for :

  • Sport and Exercise Science/Kinesiology x
  • Journal of Applied Biomechanics x
  • Athletic Training, Therapy, and Rehabilitation x
  • Refine by Access: Content accessible to me x
Clear All
Free access

Comparing Knee Kinetics and Kinematics in Healthy Individuals and Those With Knee Osteoarthritis, With and Without Flat Feet

Maryam Sohrabi, Giti Torkaman, and Fariba Bahrami

Individuals with knee osteoarthritis (KOA) and flat feet are more likely to experience increased pain and cartilage damage. This study aimed to investigate the knee kinetics, kinematics, pain, and physical function in individuals with moderate symptomatic KOA, in comparison to asymptomatic control participants. Thirty volunteers with moderate KOA (with flat feet n = 15, with normal feet n = 15) and 30 asymptomatic people (with flat feet n = 15, with normal feet n = 15) were evaluated. The knee adduction angular impulse, knee flexion moment, knee flexion angular impulse, and knee flexion angle were measured during level walking. The pain was assessed in patients with KOA. The study found that individuals with KOA had a significant increase in the knee adduction angular impulse compared with the asymptomatic people (P < .05). The KOA with flat feet group had significantly lower knee flexion moment, knee flexion angular impulse, and knee flexion angle values than the KOA with normal feet group (P < .05). Furthermore, the KOA with flat feet group had a higher pain score than the KOA with normal feet group. Individuals with osteoarthritis and flat feet had lower knee flexion moments which may indicate reduced knee force exerted through compensatory mechanisms. Despite this reduction, they reported significantly higher levels of pain compared with those without flat feet, a finding that warrants further investigation in future studies.

Free access

The Midfoot Joint Complex (Foot Arch) Contributes to the Upper Body Position in Bipedal Walking and Coordinates With the Lower Limb Joints

Leonardo D. Barsante, Paula M.M. Arantes, Daniela V. Vaz, Fabricio A. Magalhães, Diego S. Carvalho, Aline C. Cruz, Renan A. Resende, Juliana M. Ocarino, Sérgio T. Fonseca, and Thales R. Souza

This study estimated the contribution of the midfoot joint complex (MJC) kinematics to the pelvis anterior–posterior positions during the stance phase of walking and investigated whether the MJC is functionally coordinated with the lower limb joints to maintain similar pelvic positions across steps. Hip, knee, ankle, and MJC sagittal angles were measured in 11 nondisabled participants during walking. The joints’ contributions to pelvic positions were computed through equations derived from a link-segment model. Functional coordination across steps was identified when the MJC contribution to pelvic position varied and the summed contributions of other joints varied in the opposite direction (strong negative covariations [r ≤ −.7] in stance phase instants). We observed that the MJC plantarflexion (arch raising) during the midstance and late stance leads the pelvis backward, avoiding excessive forward displacement. The MJC was the second joint that contributed most to the pelvis positions (around 18% of all joints’ contributions), after the ankle joint. The MJC and ankle were the joints that were most frequently coordinated with the other joints (≅70% of the stance phase duration). The findings suggest that the MJC is part of the kinematic chain that determines pelvis positions during walking and is functionally coordinated with the lower limb joints.

Free access

Dr Charles J. (Chuck) Dillman: A Remembrance

Robert Shapiro, Robert Gregor, and John Challis

In August 2023, the biomechanics community suffered a significant loss with the death of Dr Charles J. Dillman. His work in the area of sport biomechanics was groundbreaking. In this tribute, 10 former students and 9 former colleagues remember “Chuck” and his impact on their lives, careers, and the field of biomechanics.

Full access

Comparison of Concurrent and Asynchronous Running Kinematics and Kinetics From Marker-Based and Markerless Motion Capture Under Varying Clothing Conditions

Robert M. Kanko, Jereme B. Outerleys, Elise K. Laende, W. Scott Selbie, and Kevin J. Deluzio

As markerless motion capture is increasingly used to measure 3-dimensional human pose, it is important to understand how markerless results can be interpreted alongside historical marker-based data and how they are impacted by clothing. We compared concurrent running kinematics and kinetics between marker-based and markerless motion capture, and between 2 markerless clothing conditions. Thirty adults ran on an instrumented treadmill wearing motion capture clothing while concurrent marker-based and markerless data were recorded, and ran a second time wearing athletic clothing (shorts and t-shirt) while markerless data were recorded. Differences calculated between the concurrent signals from both systems, and also between each participant’s mean signals from both asynchronous clothing conditions were summarized across all participants using root mean square differences. Most kinematic and kinetic signals were visually consistent between systems and markerless clothing conditions. Between systems, joint center positions differed by 3 cm or less, sagittal plane joint angles differed by 5° or less, and frontal and transverse plane angles differed by 5° to 10°. Joint moments differed by 0.3 N·m/kg or less between systems. Differences were sensitive to segment coordinate system definitions, highlighting the effects of these definitions when comparing against historical data or other motion capture modalities.

Full access

Impaired Neuromotor Control During Gait in Concussed Adolescents—A Frequency Analysis

Divya Jain, Valentina Graci, Megan E. Beam, Christina L. Master, Laura A. Prosser, Catherine C. McDonald, and Kristy B. Arbogast

Disruptions in gait function are common after concussion in adolescents; however, the neuromotor control deficits driving these gait disruptions are not well known. Fifteen concussed (age mean [SD]): 17.4 [0.6], 13 females, days since injury: 26.3 [9.9]) and 17 uninjured (age: 18.0 [0.7], 10 females) adolescents completed 3 trials each of single-task gait and dual-task gait (DT). During DT, participants simultaneously walked while completing a serial subtraction task. Gait metrics and variability in instantaneous mean frequency in lower extremity muscles were captured by inertial sensors and surface electromyography, respectively. A 2-way analysis of covariance was used to compare gait metrics across groups and conditions. Functional principal components analysis was used to identify regions of variability in instantaneous mean frequency curves. Functional principal component scores were compared across groups using a Welch statistic. Both groups displayed worse performance on gait metrics during DT condition compared to single-task, with no differences between groups (P < .001). Concussed adolescents displayed significantly greater instantaneous mean frequency, indicated by functional principal component 1, in the tibialis anterior, biceps femoris, and semitendinosus (P < .05) during single-task and DT compared with uninjured adolescents. Our observations suggest that concussed adolescents display inefficient motor unit recruitment lasting longer than 2 weeks following injury, regardless of the addition of a secondary task.

Full access

The Biomechanics Research and Innovation Challenge: Development, Implementation, Uptake, and Reflections on the Inaugural Program

Celeste E. Coltman, Martina Barzan, Manuela Besomi, Victoria Brackley, Jaquelin A. Bousie, Julie Choisne, Laura E. Diamond, Taylor J.M. Dick, Nicole D’Souza, Samantha Fien, Alycia Fong Yan, Sheridan A. Gho, Alexandra Giraldo-Pedroza, Laura A. Hutchinson, Laura V. Hutchison, Crystal O. Kean, Maddison M. Kirk, Amy Lewis, Jayishini N. Maharaj, Nina Maher, Kerry J. Mann, Suzanne Martin, Karen J. Mickle, Azadeh Nasseri, Isobel H. Oon, Rory Purdie, Shayan L. Quinlan, Ceridwen R. Radcliffe, Suzanne J. Snodgrass, Siddharth Verma, and Michelle Hall

Biomechanics as a discipline is ideally placed to increase awareness and participation of girls and women in science, technology, engineering, and mathematics. A nationwide Biomechanics and Research Innovation Challenge (BRInC) centered on mentoring and role modeling was developed to engage high school girls (mentees) and early-mid-career women (mentors) in the field of biomechanics through the completion of a 100-day research and/or innovation project. This manuscript describes the development, implementation, and uptake of the inaugural BRInC program and synthesizes the research and innovation projects undertaken, providing a framework for adoption of this program within the global biomechanics community. Eighty-seven high school girls in years 9 and 10 (age range: 14–16 y) were mentored in teams (n = 17) by women in biomechanics (n = 24). Using a design thinking approach, teams generated solutions to biomechanics-based problem(s)/research question(s). Eight key reflections on program strengths, as well as areas for improvement and planned changes for future iterations of the BRInC program, are outlined. These key reflections highlight the innovation, impact, and scalability of the program; the importance of a program framework and effective communication tools; and implementation of strategies to sustain the program as well as the importance of diversity and building a sense of community.

Full access

Comparison Between Movement Pattern Training and Strengthening on Kinematics and Kinetics in Patients With Chronic Hip-Related Groin Pain

Ramya Palaniappan, Michael D. Harris, Karen Steger-May, Allyn M. Bove, G. Kelley Fitzgerald, John C. Clohisy, and Marcie Harris-Hayes

The purpose of this study was to compare the preliminary effects of movement pattern training (MoveTrain) versus strengthening/flexibility (standard) treatment on hip and pelvic biomechanics in patients with chronic hip-related groin pain. This is a secondary analysis of data collected during a pilot randomized clinical trial. Thirty patients with hip pain, between the ages of 15 and 40 years, were randomized to MoveTrain or standard. Both groups completed 10 treatment sessions over 12 weeks along with a daily home exercise program. Three-dimensional motion analysis was used to collect kinematic and kinetic data of the pelvis and hip during a single-leg squat task at pretreatment and immediately posttreatment. Compared with the standard group, the MoveTrain group demonstrated smaller hip adduction angles (P = .006) and smaller hip external adduction moments (P = .008) at posttreatment. The desired changes to hip joint biomechanics, as found in this study, may require specificity in training that could allow health care professionals to better customize the rehabilitation of patients with hip pain. These findings can also be applied to the design and implementation of future clinical trials to strengthen our understanding of the long-term implications of different rehabilitation techniques for patients with hip pain.

Free access

The History and Future of Neuromusculoskeletal Biomechanics

David G. Lloyd, Ilse Jonkers, Scott L. Delp, and Luca Modenese

The Executive Council of the International Society of Biomechanics has initiated and overseen the commemorations of the Society’s 50th Anniversary in 2023. This included multiple series of lectures at the ninth World Congress of Biomechanics in 2022 and XXIXth Congress of the International Society of Biomechanics in 2023, all linked to special issues of International Society of Biomechanics’ affiliated journals. This special issue of the Journal of Applied Biomechanics is dedicated to the biomechanics of the neuromusculoskeletal system. The reader is encouraged to explore this special issue which comprises 6 papers exploring the current state-of the-art, and future directions and roles for neuromusculoskeletal biomechanics. This editorial presents a very brief history of the science of the neuromusculoskeletal system’s 4 main components: the central nervous system, musculotendon units, the musculoskeletal system, and joints, and how they biomechanically integrate to enable an understanding of the generation and control of human movement. This also entails a quick exploration of contemporary neuromusculoskeletal biomechanics and its future with new fields of application.

Free access

Tapping Into Skeletal Muscle Biomechanics for Design and Control of Lower Limb Exoskeletons: A Narrative Review

Zahra S. Mahdian, Huawei Wang, Mohamed Irfan Mohamed Refai, Guillaume Durandau, Massimo Sartori, and Mhairi K. MacLean

Lower limb exoskeletons and exosuits (“exos”) are traditionally designed with a strong focus on mechatronics and actuation, whereas the “human side” is often disregarded or minimally modeled. Muscle biomechanics principles and skeletal muscle response to robot-delivered loads should be incorporated in design/control of exos. In this narrative review, we summarize the advances in literature with respect to the fusion of muscle biomechanics and lower limb exoskeletons. We report methods to measure muscle biomechanics directly and indirectly and summarize the studies that have incorporated muscle measures for improved design and control of intuitive lower limb exos. Finally, we delve into articles that have studied how the human–exo interaction influences muscle biomechanics during locomotion. To support neurorehabilitation and facilitate everyday use of wearable assistive technologies, we believe that future studies should investigate and predict how exoskeleton assistance strategies would structurally remodel skeletal muscle over time. Real-time mapping of the neuromechanical origin and generation of muscle force resulting in joint torques should be combined with musculoskeletal models to address time-varying parameters such as adaptation to exos and fatigue. Development of smarter predictive controllers that steer rather than assist biological components could result in a synchronized human–machine system that optimizes the biological and electromechanical performance of the combined system.

Free access

A Narrative Review of Personalized Musculoskeletal Modeling Using the Physiome and Musculoskeletal Atlas Projects

Justin Fernandez, Vickie Shim, Marco Schneider, Julie Choisne, Geoff Handsfield, Ted Yeung, Ju Zhang, Peter Hunter, and Thor Besier

In this narrative review, we explore developments in the field of computational musculoskeletal model personalization using the Physiome and Musculoskeletal Atlas Projects. Model geometry personalization; statistical shape modeling; and its impact on segmentation, classification, and model creation are explored. Examples include the trapeziometacarpal and tibiofemoral joints, Achilles tendon, gastrocnemius muscle, and pediatric lower limb bones. Finally, a more general approach to model personalization is discussed based on the idea of multiscale personalization called scaffolds.